Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 906 - 917
BIO-BASED
CONTENT OF OLIGOMERS DERIVED FROM PALM OIL: SAMPLE COMBUSTION AND LIQUID
SCINTILLATION COUNTING TECHNIQUE
(Kandungan Berasaskan Bio
dalam Oligomer daripada Minyak Sawit: Teknik Pembakaran Sampel dan Penghitungan
Sintilasi Cecair)
Mohd Azmil Mohd Noor*,
Tuan Noor
Maznee Tuan Ismail, Razmah Ghazali
Quality and Environmental
Assessment Unit, Advanced Oleochemical Technologies Division,
Malaysian Palm Oil Board, No. 6,
Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
*Corresponding
author: mohd.azmil@mpob.gov.my
Received: 3 July 2020; Accepted: 18 September 2020;
Published: 10 December 2020
Abstract
The bio-based content
is defined as the ratio of weight of the bio-based carbon to the total organic
carbon in the product. A radiocarbon technique, involving combustion of samples
and counting of the resulting 14C isotope, was applied to quantify
the bio-based content of polyols derived from palm oil. The samples were
combusted using a sample oxidizer and the carbon dioxide was trapped by a
vapor-phase reaction with an amine, forming carbamate, which was then mixed
with an appropriate scintillation cocktail. For the liquid scintillation
counting, validation of the method was evaluated through recovery, while the
quenching effect was corrected by constructing a quench curve. The optimized
radiocarbon method was then applied to determine the 14C activity
(counts per minute [CPM] and disintegrations per minute [DPM]) of palm olein
and the polyols derived from it. Palm olein were confirmed to have 100%
bio-based content while the value for the polyols derived from them ranged from
71 to 96%, depending on the reactants used for ring-opening reaction of the
epoxidized palm olein.
Keywords: palm olein polyol, renewable, radiocarbon,
carbon dioxide trapping, quench
Abstract
Kandungan berasaskan bio
ditakrifkan sebagai nisbah berat karbon berasaskan bio dengan jumlah karbon
organik di dalam sesuatu produk. Teknik radiokarbon, yang melibatkan pembakaran
sampel dan penghitungan isotop 14C yang dihasilkan, telah digunakan
untuk mengukur kandungan berasaskan bio dalam poliol daripada minyak sawit.
Sampel dibakar menggunakan pengoksidasi sampel dan karbon dioksida diperangkap
dengan amina, membentuk karbamat, yang kemudian dicampurkan dengan koktel
sintilasi yang sesuai. Bagi penghitungan sintilasi cecair, ketepatan kaedah
dinilai melalui pemulihan, sementara kesan pelindapkejutan dibetulkan dengan
membina keluk pelindapkejutan. Kaedah radiokarbon yang dioptimumkan kemudiannya
digunakan untuk menentukan aktiviti 14C (hitungan per minit [CPM]
dan disintegrasi per minit [DPM]) olein sawit dan poliol yang berasal
daripadanya. Olein sawit disahkan mempunyai 100% kandungan berasaskan bio manakala poliol sawit berkisar
antara 71 hingga 96%, bergantung kepada reaktan yang digunakan untuk tindak
balas ke atas olein sawit yang teroksida.
Kata kunci: poliol olein sawit, boleh diperbaharui,
radiokarbon, perangkap karbon dioksida, pelindapkejutan
References
1.
Ionescu, M.
(2005). Chemistry and technology of polyols for polyurethanes. Rapra Technology
Limited, Shawbury, Shrewsbury, Shrosphire, SY4 4NR (United Kingdom).
2.
Kunioka, M. (2010).
Possible incorporation of petroleum-based carbons in biochemicals produced by
bioprocess--biomass carbon ratio measured by accelerator mass spectrometry. Applied Microbiology Biotechnology, 87:
491-497.
3.
Narine, S. S., Kong, X.,
Bouzidi, L. and Sporns, P. (2007). Physical properties of polyurethanes
produced from polyols from seed oils: I. Elastomers. Journal of the American Oil Chemists' Society, 84: 55-63.
4.
Caillol, S., Desroches,
M., Boutevin, G., Loubat, C., Auvergne, R. and Boutevin, B. (2012). Synthesis
of new polyester polyols from epoxidized vegetable oils and biobased acids. European Journal of Lipid Science and
Technology, 114: 1447-1459.
5.
Tuan Ismail, T. N. M.,
Ibrahim, N. A., Mohd Noor, M. A., Hoong, S. S., Poo Palam, K. D., Yeong, S. K.,
Idris, Z., Schiffman, C. M., Sendijarevic, I., Abd Malek, E., Zainuddin, N. and
Sendijarevic, V. (2018). Oligomeric composition of polyols from fatty acid
methyl ester: The effect of ring-opening reactants of epoxide groups. Journal of the American Oil Chemists'
Society, 95: 509-523.
6.
Mohd Noor, M. A.,
Sendijarevic, V., Hoong, S. S., Sendijarevic, I., Tuan Ismail, T. N. M.,
Hanzah, N. A., Mohd Noor, N., Poo Palam, K. D., Ghazali, R. and Abu Hassan, H.
(2016). Molecular weight determination of palm olein polyols by gel permeation
chromatography using polyether polyols calibration. Journal of the American Oil Chemists' Society, 93: 721-730.
7.
Tuan Ismail, T. N. M.,
Ibrahim, N. A., Mohd Noor, M. A., Hoong, S. S., Poo Palam, K. D., Yeong, S. K.,
Idris, Z., Sendijarevic, C. M. S. I., Abd Malek, E., Zainuddin, N. and
Sendijarevic, V. (2018). Oligomeric composition of palm olein-based polyols:
The effect of nucleophiles. European
Journal of Lipid Science and Technology, 120: 1700354.
8.
Mohd Noor, M. A., Tuan
Ismail, T. N. M., Sendijarevic, V., Schiffman, C. M., Sendijarevic, I.,
Ghazali, R. and Idris, Z. (2017). Molecular weight distribution of low
molecular weight polyols derived from fatty acid methyl esters. Journal of the American Oil Chemists'
Society, 94: 387-395.
9.
Ain, N. H., Tuan Noor, M.
T. I., Mohd Noor, M. A., Srihanum, A., Devi, K. P. P., Mohd, N. S., Mohdnoor,
N., Kian, Y. S., Hassan, H. A., Campara, I., Schiffman, C. M., Pietrzyk, K.,
Sendijarevic, V. and Sendijarevic, I. (2016). Structure–property performance of
natural palm olein polyol in the viscoelastic polyurethane foam. Journal of Cellular Plastics, 53: 65-81.
10.
Prociak, A., Malewska,
E., Kurańska, M., Bąk, S. and Budny, P. (2018). Flexible polyurethane
foams synthesized with palm oil-based bio-polyols obtained with the use of
different oxirane ring opener. Industrial
Crops and Products, 115: 69-77.
11.
Mohd Noor, M. A., Hanzah,
N. A., Ghazali, R., Adnan, S., Poo Palam, K. D., Tuan Ismail, T. N. M. and Abu
Hassan, H. (2015). Determination of volatile organic compounds in palm-based
polyurethane foams using static headspace gas chromatography mass spectrometer.
Journal of Oil Palm Research, 27:
273-281.
12.
Nurul ‘Ain, H., Maznee,
T. I. T. N., Norhayati, M. N., Noor, M. A. M., Adnan, S., Devi, P. P. K.,
Norhisham, S. M., Yeong, S. K., Hazimah, A. H., Campara, I., Sendijarevic, V.
and Sendijarevic, I. (2016). Natural palm olein polyol as a replacement for
polyether polyols in viscoelastic polyurethane foam. Journal of the American Oil Chemists' Society, 93: 983-993.
13.
Kunioka, M., Ninomiya, F.
and Funabashi, M. (2007). Biobased contents of organic fillers and
polycaprolactone composites with cellulose fillers measured by accelerator mass
spectrometry based on ASTM D6866. Journal
of Polymers and the Environment, 15: 281-287.
14.
Norton, G. A. and Devlin,
S. L. (2006). Determining the modern carbon content of biobased products using
radiocarbon analysis. Bioresource Technology,
97: 2084-2090.
15.
Culp, R., Noakes, J.,
Cherkinsky, A., Prasad, G. R. and Dvoracek, D. (2013). A decade of AMS at the
University of Georgia. Nuclear
instruments and methods in physics research section B: Beam interactions with
materials and atoms 294: pp. 46-49.
16.
Jou, R., Macario, K.,
Carvalho, C., Dias, R., Brum, M., Cunha, F., Ferreira, C. and Chanca, I.
(2015). Biogenic fraction in the synthesis of polyethylene terephthalate. International Journal of Mass Spectrometry,
388: 65-68.
17.
Nagakawa, Y., Yunoki, S.
and Saito, M. (2014). Liquid scintillation counting of solid-state plastic
pellets to distinguish bio-based polyethylene. Polymer Testing, 33: 13-15.
18.
Norton, G. A., Hood, D.
G. and Devlin, S. L. (2007). Accuracy of radioanalytical procedures used to
determine the biobased content of manufactured products. Bioresource Technology, 98: 1052-1056.
19.
Dijs, I. J., Van der
Windt, E., Kaihola, L. and van der Borg, K. (2006). Quantitative determination
by 14C analysis of the biological component in fuels. Radiocarbon, 48: 315-323.
20.
Edler, R. and Kaihola, L.
(2010). Differentiation between fossil and biofuels by liquid scintillation
beta spectrometry-direct method. Nukleonika,
55: 127-131.
21.
Edler, R. (2008). The use
of liquid scintillation counting technology for the determination of biogenic
materials. LSC: 261-267.
22.
Krištof, R. and Logar, J.
K. (2013). Direct LSC method for measurements of biofuels in fuel. Talanta, 111: 183-188.
23.
Kunioka, M., Inuzuka, Y.,
Ninomiya, F. and Funabashi, M. (2006). Biobased contents of biodegradable
poly(ε-caprolactone) composites polymerized and directly molded using
aluminium triflate from caprolactone with cellulose and inorganic filler. Macromolecular Bioscience, 6: 517-523.
24.
Noakes, J., Culp, R.,
Nigam, M., Dvoracek, D. and Norton, G. (2005). A comparison of analytical
methods for the certification of biobased products. Prace Naukowe GIG. Gornictwo i Srodowisko: pp. 19.
25.
Molnar, M., Svingor, E.,
Nagy, S. and Svetlik, I. (2005). Refining the CO2 absorption method
for low level 14C liquid scintillation counting in the ATOMKI. ATOMKI Annual Report: p.79.
26.
Culp, R. and Noakes, J.
(2009). Evaluation of bio-based content ASTM Method 6866-06A: Improvements
revealed by liquid scintillation counting, accelerator mass spectrometry and
stable isotopes for products containing inorganic carbon. LSC 2008
International Conference on Advances in Liquid Scintillation Spectrometry:
pp. 269-278.
27.
Tudyka, K. and Pawlyta,
J. (2014). Biocomponent determination in vinegars with the help of 14C
measured by liquid scintillation counting. Food
Chemistry, 145: 614-616.
28.
Saito, K., Miyatake, H.
and Kurihara, N. (1990). A combustion method for the simultaneous determination
of 3H, 14C, and 35S in triply labeled organic
samples by liquid scintillation counting. Analytical
Biochemistry, 190: 276-280.