Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 906 - 917

 

 

 

 

BIO-BASED CONTENT OF OLIGOMERS DERIVED FROM PALM OIL: SAMPLE COMBUSTION AND LIQUID SCINTILLATION COUNTING TECHNIQUE

 

(Kandungan Berasaskan Bio dalam Oligomer daripada Minyak Sawit: Teknik Pembakaran Sampel dan Penghitungan Sintilasi Cecair)

 

Mohd Azmil Mohd Noor*, Tuan Noor Maznee Tuan Ismail, Razmah Ghazali

 

Quality and Environmental Assessment Unit, Advanced Oleochemical Technologies Division,

Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

 

*Corresponding author:  mohd.azmil@mpob.gov.my

 

 

Received: 3 July 2020; Accepted: 18 September 2020; Published:  10 December 2020

 

 

Abstract

The bio-based content is defined as the ratio of weight of the bio-based carbon to the total organic carbon in the product. A radiocarbon technique, involving combustion of samples and counting of the resulting 14C isotope, was applied to quantify the bio-based content of polyols derived from palm oil. The samples were combusted using a sample oxidizer and the carbon dioxide was trapped by a vapor-phase reaction with an amine, forming carbamate, which was then mixed with an appropriate scintillation cocktail. For the liquid scintillation counting, validation of the method was evaluated through recovery, while the quenching effect was corrected by constructing a quench curve. The optimized radiocarbon method was then applied to determine the 14C activity (counts per minute [CPM] and disintegrations per minute [DPM]) of palm olein and the polyols derived from it. Palm olein were confirmed to have 100% bio-based content while the value for the polyols derived from them ranged from 71 to 96%, depending on the reactants used for ring-opening reaction of the epoxidized palm olein.

 

Keywords:  palm olein polyol, renewable, radiocarbon, carbon dioxide trapping, quench

 

Abstract

Kandungan berasaskan bio ditakrifkan sebagai nisbah berat karbon berasaskan bio dengan jumlah karbon organik di dalam sesuatu produk. Teknik radiokarbon, yang melibatkan pembakaran sampel dan penghitungan isotop 14C yang dihasilkan, telah digunakan untuk mengukur kandungan berasaskan bio dalam poliol daripada minyak sawit. Sampel dibakar menggunakan pengoksidasi sampel dan karbon dioksida diperangkap dengan amina, membentuk karbamat, yang kemudian dicampurkan dengan koktel sintilasi yang sesuai. Bagi penghitungan sintilasi cecair, ketepatan kaedah dinilai melalui pemulihan, sementara kesan pelindapkejutan dibetulkan dengan membina keluk pelindapkejutan. Kaedah radiokarbon yang dioptimumkan kemudiannya digunakan untuk menentukan aktiviti 14C (hitungan per minit [CPM] dan disintegrasi per minit [DPM]) olein sawit dan poliol yang berasal daripadanya. Olein sawit disahkan mempunyai 100% kandungan  berasaskan bio manakala poliol sawit berkisar antara 71 hingga 96%, bergantung kepada reaktan yang digunakan untuk tindak balas ke atas olein sawit yang teroksida.

 

Kata kunci:  poliol olein sawit, boleh diperbaharui, radiokarbon, perangkap karbon dioksida, pelindapkejutan

 

References

1.      Ionescu, M. (2005). Chemistry and technology of polyols for polyurethanes. Rapra Technology Limited, Shawbury, Shrewsbury, Shrosphire, SY4 4NR (United Kingdom).

2.      Kunioka, M. (2010). Possible incorporation of petroleum-based carbons in biochemicals produced by bioprocess--biomass carbon ratio measured by accelerator mass spectrometry. Applied Microbiology Biotechnology, 87: 491-497.

3.      Narine, S. S., Kong, X., Bouzidi, L. and Sporns, P. (2007). Physical properties of polyurethanes produced from polyols from seed oils: I. Elastomers. Journal of the American Oil Chemists' Society, 84: 55-63.

4.      Caillol, S., Desroches, M., Boutevin, G., Loubat, C., Auvergne, R. and Boutevin, B. (2012). Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids. European Journal of Lipid Science and Technology, 114: 1447-1459.

5.      Tuan Ismail, T. N. M., Ibrahim, N. A., Mohd Noor, M. A., Hoong, S. S., Poo Palam, K. D., Yeong, S. K., Idris, Z., Schiffman, C. M., Sendijarevic, I., Abd Malek, E., Zainuddin, N. and Sendijarevic, V. (2018). Oligomeric composition of polyols from fatty acid methyl ester: The effect of ring-opening reactants of epoxide groups. Journal of the American Oil Chemists' Society, 95: 509-523.

6.     Mohd Noor, M. A., Sendijarevic, V., Hoong, S. S., Sendijarevic, I., Tuan Ismail, T. N. M., Hanzah, N. A., Mohd Noor, N., Poo Palam, K. D., Ghazali, R. and Abu Hassan, H. (2016). Molecular weight determination of palm olein polyols by gel permeation chromatography using polyether polyols calibration. Journal of the American Oil Chemists' Society, 93: 721-730.

7.     Tuan Ismail, T. N. M., Ibrahim, N. A., Mohd Noor, M. A., Hoong, S. S., Poo Palam, K. D., Yeong, S. K., Idris, Z., Sendijarevic, C. M. S. I., Abd Malek, E., Zainuddin, N. and Sendijarevic, V. (2018). Oligomeric composition of palm olein-based polyols: The effect of nucleophiles. European Journal of Lipid Science and Technology, 120: 1700354.

8.      Mohd Noor, M. A., Tuan Ismail, T. N. M., Sendijarevic, V., Schiffman, C. M., Sendijarevic, I., Ghazali, R. and Idris, Z. (2017). Molecular weight distribution of low molecular weight polyols derived from fatty acid methyl esters. Journal of the American Oil Chemists' Society, 94: 387-395.

9.      Ain, N. H., Tuan Noor, M. T. I., Mohd Noor, M. A., Srihanum, A., Devi, K. P. P., Mohd, N. S., Mohdnoor, N., Kian, Y. S., Hassan, H. A., Campara, I., Schiffman, C. M., Pietrzyk, K., Sendijarevic, V. and Sendijarevic, I. (2016). Structure–property performance of natural palm olein polyol in the viscoelastic polyurethane foam. Journal of Cellular Plastics, 53: 65-81.

10.   Prociak, A., Malewska, E., Kurańska, M., Bąk, S. and Budny, P. (2018). Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of different oxirane ring opener. Industrial Crops and Products, 115: 69-77.

11.   Mohd Noor, M. A., Hanzah, N. A., Ghazali, R., Adnan, S., Poo Palam, K. D., Tuan Ismail, T. N. M. and Abu Hassan, H. (2015). Determination of volatile organic compounds in palm-based polyurethane foams using static headspace gas chromatography mass spectrometer. Journal of Oil Palm Research, 27: 273-281.

12.   Nurul ‘Ain, H., Maznee, T. I. T. N., Norhayati, M. N., Noor, M. A. M., Adnan, S., Devi, P. P. K., Norhisham, S. M., Yeong, S. K., Hazimah, A. H., Campara, I., Sendijarevic, V. and Sendijarevic, I. (2016). Natural palm olein polyol as a replacement for polyether polyols in viscoelastic polyurethane foam. Journal of the American Oil Chemists' Society, 93: 983-993.

13.   Kunioka, M., Ninomiya, F. and Funabashi, M. (2007). Biobased contents of organic fillers and polycaprolactone composites with cellulose fillers measured by accelerator mass spectrometry based on ASTM D6866. Journal of Polymers and the Environment, 15: 281-287.

14.   Norton, G. A. and Devlin, S. L. (2006). Determining the modern carbon content of biobased products using radiocarbon analysis. Bioresource Technology, 97: 2084-2090.

15.   Culp, R., Noakes, J., Cherkinsky, A., Prasad, G. R. and Dvoracek, D. (2013). A decade of AMS at the University of Georgia. Nuclear instruments and methods in physics research section B: Beam interactions with materials and atoms 294: pp. 46-49.

16.   Jou, R., Macario, K., Carvalho, C., Dias, R., Brum, M., Cunha, F., Ferreira, C. and Chanca, I. (2015). Biogenic fraction in the synthesis of polyethylene terephthalate. International Journal of Mass Spectrometry, 388: 65-68.

17.   Nagakawa, Y., Yunoki, S. and Saito, M. (2014). Liquid scintillation counting of solid-state plastic pellets to distinguish bio-based polyethylene. Polymer Testing, 33: 13-15.

18.   Norton, G. A., Hood, D. G. and Devlin, S. L. (2007). Accuracy of radioanalytical procedures used to determine the biobased content of manufactured products. Bioresource Technology, 98: 1052-1056.

19.   Dijs, I. J., Van der Windt, E., Kaihola, L. and van der Borg, K. (2006). Quantitative determination by 14C analysis of the biological component in fuels. Radiocarbon, 48: 315-323.

20.   Edler, R. and Kaihola, L. (2010). Differentiation between fossil and biofuels by liquid scintillation beta spectrometry-direct method. Nukleonika, 55: 127-131.

21.   Edler, R. (2008). The use of liquid scintillation counting technology for the determination of biogenic materials. LSC: 261-267.

22.   Krištof, R. and Logar, J. K. (2013). Direct LSC method for measurements of biofuels in fuel. Talanta, 111: 183-188.

23.   Kunioka, M., Inuzuka, Y., Ninomiya, F. and Funabashi, M. (2006). Biobased contents of biodegradable poly(ε-caprolactone) composites polymerized and directly molded using aluminium triflate from caprolactone with cellulose and inorganic filler. Macromolecular Bioscience, 6: 517-523.

24.   Noakes, J., Culp, R., Nigam, M., Dvoracek, D. and Norton, G. (2005). A comparison of analytical methods for the certification of biobased products. Prace Naukowe GIG. Gornictwo i Srodowisko: pp. 19.

25.   Molnar, M., Svingor, E., Nagy, S. and Svetlik, I. (2005). Refining the CO2 absorption method for low level 14C liquid scintillation counting in the ATOMKI. ATOMKI Annual Report: p.79.

26.   Culp, R. and Noakes, J. (2009). Evaluation of bio-based content ASTM Method 6866-06A: Improvements revealed by liquid scintillation counting, accelerator mass spectrometry and stable isotopes for products containing inorganic carbon. LSC 2008 International Conference on Advances in Liquid Scintillation Spectrometry: pp. 269-278.

27.   Tudyka, K. and Pawlyta, J. (2014). Biocomponent determination in vinegars with the help of 14C measured by liquid scintillation counting. Food Chemistry, 145: 614-616.

28.   Saito, K., Miyatake, H. and Kurihara, N. (1990). A combustion method for the simultaneous determination of 3H, 14C, and 35S in triply labeled organic samples by liquid scintillation counting. Analytical Biochemistry, 190: 276-280.