Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 882 - 892

 

 

 

 

DETERMINATION OF PHENANTHRENE AND FLUORANTHENE IN RICE SAMPLES BY ACTIVATED CARBON-BASED DISPERSIVE SOLID PHASE MICRO-EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-FLAME IONIZATION DETECTOR ANALYSIS

 

(Penentuan Phenantrena dan Fluorantena dalam Sampel Beras Menggunakan Pengekstrakan Mikro Fasa Pepejal Berserak Berasaskan Karbon Diaktifkan Bersama Analisis Pengesan Pengionan Nyalaan-Kromatografi Gas)

 

Nurul Nadjwa Nahrowi1, Boon Yih Hui2, Mohamad Shariff Shahriman1, Noorfatimah Yahaya2, Nur Nadhirah Mohd Zain2, Saliza Asman3, Md Firoz Khan1, Kavirajaa Pandian Sambasevam4, Vuanghao Lim2, Muggundha Raoov1,5*

 

1Department of Chemistry, Faculty of Science,

Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2Integrative Medicine Cluster, Advanced Medical & Dental Institute,

Universiti Sains Malaysia, 13200 Pulau Pinang, Malaysia

3Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Pagoh Education Hub,

Universiti Tun Hussein Onn Malaysia, 84000 Pagoh, Muar, Johor, Malaysia

4School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA, Negeri Sembilan Branch, Kuala Pilah Campus, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

5Universiti Malaya Centre for Ionic Liquids (UMCIL), Department of Chemistry, Faculty of Science,

Universiti Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author:  muggundha@um.edu.my

 

 

Received: 12 August 2020; Accepted: 20 October 2020; Published:  10 December 2020

 

 

Abstract

A simple dispersive solid phase micro-extraction (DSPME) based on activated carbon (AC) was performed for the determination and separation of carcinogenic polycyclic aromatic hydrocarbons (PAHs), namely phenanthrene and fluoranthene, in selected white, brown and parboiled rice samples. The extraction was coupled with gas chromatography-flame ionization detector (GC-FID) for analysis. Under the optimized conditions [amount of adsorbent (5 mg), sample volume (40 mL), type (dichloromethane), and volume of desorption solvent (300 µL)], calibration curves were found to be linear for the concentration between 10 and 1000 µg kg-1 with coefficient of determination (R2) from 0.9938 to 0.9955. The limit of detection (LOD) and limit of quantification (LOQ) were in the range of 0.11 - 0.15 µg kg-1 and 0.33 - 0.46 µg kg-1, respectively. Relative standard deviation (RSD) was less than 8.02% and 5.48% for intra-day (n = 5) and inter-day (n = 5) for the present method, respectively. High pre-concentration factor (2587 - 2866) and satisfactory recoveries (90.23 - 115.63%) were also achieved. The proposed method was found to be simple, rapid and reliable for the monitoring of PAHs in rice samples.

 

Keywords:   dispersive solid phase micro-extraction, activated carbon, polycyclic aromatic hydrocarbons, rice samples

 

Abstrak

Pengekstrakan mikro fasa pepejal berserak (DSPME) yang mudah berasaskan karbon diaktifkan (AC) telah dijalankan untuk penentuan dan pengasingan hidrokarbon polisiklik aromatik (PAHs) yang boleh menyebabkan barah iaitu phenantrena dan fluorantena dalam sampel beras putih, perang dan pra-rebus yang terpilih. Pengekstrakan dijalankan bersama dengan - kromatografi gas - pengesan pengionan nyalaan (GC-FID) untuk analisis. Dalam keadaan optimum [jumlah penyerapan (5 mg), jumlah isipadu sampel (40 mL) dan jenis serta jumlah isipadu pelarut penyerapan (diklorometana, 300 µL)], keluk penentukuran didapati bergerak lurus untuk kepekatan antara 10 dan 1000 µg kg-1 dengan pekali penentuan (R2) daripada 0.9938 hingga 0.9955. Had pengesanan (LOD) dan had kuantifikasi (LOQ), masing-masing dalam julat 0.11 - 0.15 µg kg-1 dan 0.33 - 0.46 µg kg-1. Berdasarkan kaedah yang sekarang, sisihan piawai relatif (RSD) menunjukkan masing-masing kurang daripada 8.02% dan 5.48% untuk hari yang sama (n=5) dan antara hari (n=5). Faktor prakepekatan tinggi (2587 - 2866) dan pemulihan yang memuaskan (90.23 - 115.63%) juga dapat dicapai. Kaedah yang dicadangkan didapati mudah, cepat dan boleh dipercayai untuk pemantauan PAH dalam sampel beras.

 

Kata kunci:     pergekstrakan mikro fasa pepejal dispersif, karbon diaktifkan, hidrokarbon polisiklik aromatik, sampel beras

 

References

1.      Mohanty, S. (2013) Trends in global rice consumption. Rice Today, 12: 44-45.

2.      McGrath, T. E., Chan, W. G. and Hajaligol, M. R. (2003). Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis., 66: 51-70.

3.      Escarrone, A., Caldas, S., Furlong, E., Meneghetti, V., Fagundes, C., Arias, J. and Primel, E. (2014). Polycyclic aromatic hydrocarbons in rice grain dried by different processes: Evaluation of a quick, easy, cheap, effective, rugged and safe extraction method. Food Chemistry, 146: 597-602.

4.      Matin, A. A., Biparva, P. and Gheshlaghi, M. (2014). Gas chromatographic determination of polycyclic aromatic hydrocarbons in water and smoked rice samples after solid-phase microextraction using multiwalled carbon nanotube loaded hollow fiber. Journal Chromatography A, 1374: 50-57.

5.      Johnsen, A. R. and Karlson, U. (2005). PAH degradation capacity of soil microbial communities; does it depend on PAH exposure?. Microbial Ecology, 50: 488-495.

6.      Eisler, R. (1987). Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: A synoptic review. Contaminant Hazard Reviews Report, 11: 55.

7.      Shahriman, M. S., Ramachandran, M. R., Zain, N. N. M., Mohamad, S., Manan, N. S. A. and Yaman, S. M. (2018). Polyaniline-dicationic ionic liquid coated with magnetic nanoparticles composite for magnetic solid phase extraction of polycyclic aromatic hydrocarbons in environmental samples. Talanta, 178: 211-221.

8.      Yang, R., Zhou, R., Xie, T. and Jing, C. (2018). Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan plateau. Environmental Geochemistry  Health., 40: 1899-1906.

9.      Bertinetti, I. A., Ferreira, C. D., Monks, J. L. F., Sanches-Filho, P. J. and Elias, M. C. (2018). Accumulation of polycyclic aromatic hydrocarbons (PAHs) in rice subjected to drying with different fuels plus temperature, industrial processes and cooking. Journal Food Composition Analysis, 66: 109-115.

10.   Sarafraz-Yazdi, A., Ghaemi, F. and Amiri, A. (2012). Comparative study of the sol–gel based solid phase microextraction fibers in extraction of naphthalene, fluorene, anthracene and phenanthrene from saffron samples extractants. Microchimica Acta, 176: 317-325.

11.   Tsai, W. H., Huang, T. C., Huang, J. J., Hsue, Y. H. and Chuang, H. Y. (2009). Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. Journal of Chromatography. A, 1216: 2263-2269.

12.   Anastassiades, M., Lehotay, S. J., Štajnbaher, D. and Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. Journal of AOAC International, 86: 412-431.

13.   Ni, N., Wang, F., Song, Y., Bian, Y., Shi, R., Yang, X., Gu, C. and Jiang, X. (2018). Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: Degradation stimulation vs immobilization. Chemosphere, 196: 288-296.

14.   Gong, Z., Alef, K., Wilke, B. M. and Li, P. (2007). Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. Journal Hazardous Materials, 143: 372-378.

15.   Eeshwarasinghe, D., Loganathan, P. and Vigneswaran, S. (2019). Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere, 223: 616-627.

16.   Li, X., Wei, S., Sun, Y., Sun, Q., Liang, L., Zhang, B., Piao, H., Song, D. and Wang, X. (2016). Glass slides functionalized by 1‐carboxyethyl‐3‐methylimidazolium chloride for the determination of triazine herbicides in rice using high‐performance liquid chromatography. Journal of Separation Sciences, 39: 4585-4591.

17.   Boon, Y. H., Zain, N. N. M., Mohamad, S., Osman, H. and Raoov, M. (2019). Magnetic poly (β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chemistry, 278: 322-332.

18.   Huang, X., Lu, Q., Hao, H., Wei, Q., Shi, B., Yu, J., Wang, C. and Wang, Y. (2019).  Evaluation of the treatability of various odor compounds by powdered activated carbon. Water Research, 156: 414-424.

19.   Saraji, M., Boroujeni, M. K., Bidgoli, A. A. H. (2011). Comparison of dispersive liquid–liquid microextraction and hollow fiber liquid–liquid–liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography. Analytical and Bioanalytical Chemistry, 400: 2149.

20.   Galan-Cano, F., Alcudia-Leon, M. C., Lucena, R., Cardenas, S. and Valcarcel, M. (2013).  Ionic liquid coated magnetic nanoparticles for the gas chromatography/mass spectrometric determination of polycyclic aromatic hydrocarbons in waters. Journal of Chromatography A, 1300: 134-140.

21.   Acree, Jr. W. E. (2013). IUPAC-NIST solubility data series. 98. Solubility of polycyclic aromatic hydrocarbons in pure and organic solvent mixtures revised and updated. Part 3. Neat organic solvents. Journal of Physical and Chemical Reference Data, 42: 013105.

22.   Lehotay, S., Schenck, F. (2000). Multi-residue methods: Extraction encyclopaedia of separation science: pp. 3409-3415.

23.   Zhao, G., Song, S., Wang, C., Wu, Q. and Wang, Z. (2011). Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Analitica Chimica Acta, 708: 155-159.

24.   Food Safety Authority of Ireland (2015). Polycyclic aromatic hydrocarbons (PAHs) in food. Food Safety Authority of Ireland, 2: 1-10.

25.   Mohd Hassan, F. W., Raoov, M., Kamaruzaman, S., Sanagi, M. M., Yoshida, N., Hirota, Y., Nishiyama, N. and Yahaya, N. (2018). Dispersive liquid–liquid microextraction combined with dispersive solid‐phase extraction for gas chromatography with mass spectrometry determination of polycyclic aromatic hydrocarbons in aqueous matrices. Journal of Separation Sciences, 41: 3751-3763.

26.   Olatunji, O. S., Fatoki, O. S., Opeolu, B. O. and Ximba, B. J. (2014). Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography flame ionization detector. Food Chemistry, 156: 296-300.