Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 882 - 892
DETERMINATION OF PHENANTHRENE AND FLUORANTHENE IN RICE
SAMPLES BY ACTIVATED CARBON-BASED DISPERSIVE SOLID PHASE MICRO-EXTRACTION
COUPLED WITH GAS CHROMATOGRAPHY-FLAME IONIZATION DETECTOR ANALYSIS
(Penentuan Phenantrena dan Fluorantena dalam Sampel Beras
Menggunakan Pengekstrakan Mikro Fasa Pepejal Berserak Berasaskan Karbon
Diaktifkan Bersama Analisis Pengesan Pengionan Nyalaan-Kromatografi Gas)
Nurul Nadjwa Nahrowi1, Boon Yih Hui2, Mohamad Shariff
Shahriman1, Noorfatimah Yahaya2, Nur Nadhirah Mohd Zain2,
Saliza Asman3, Md Firoz Khan1, Kavirajaa Pandian
Sambasevam4, Vuanghao Lim2, Muggundha Raoov1,5*
1Department of Chemistry, Faculty of Science,
Universiti Malaya, 50603
Kuala Lumpur, Malaysia
2Integrative Medicine Cluster, Advanced Medical &
Dental Institute,
Universiti Sains Malaysia,
13200 Pulau Pinang, Malaysia
3Department of Physics and Chemistry, Faculty of Applied
Sciences and Technology, Pagoh Education Hub,
Universiti Tun Hussein Onn
Malaysia, 84000 Pagoh, Muar, Johor, Malaysia
4School of Chemistry and Environment, Faculty of Applied
Sciences,
Universiti Teknologi MARA,
Negeri Sembilan Branch, Kuala Pilah Campus, 72000 Kuala Pilah, Negeri Sembilan,
Malaysia
5Universiti Malaya Centre for Ionic Liquids (UMCIL),
Department of Chemistry, Faculty of Science,
Universiti Malaya, 50603
Kuala Lumpur, Malaysia
*Corresponding author:
muggundha@um.edu.my
Received: 12 August 2020;
Accepted: 20 October 2020; Published: 10
December 2020
Abstract
A simple dispersive
solid phase micro-extraction (DSPME) based on activated carbon (AC) was
performed for the determination and separation of carcinogenic polycyclic
aromatic hydrocarbons (PAHs), namely phenanthrene and fluoranthene, in selected
white, brown and parboiled rice samples. The extraction was coupled with gas chromatography-flame ionization detector (GC-FID)
for analysis. Under the optimized conditions [amount of adsorbent (5 mg),
sample volume (40 mL), type (dichloromethane), and volume of desorption solvent
(300 µL)], calibration curves were found to be linear for the concentration
between 10 and 1000 µg kg-1 with coefficient of determination (R2)
from 0.9938 to 0.9955. The limit of detection (LOD) and limit of quantification
(LOQ) were in the range of 0.11 - 0.15 µg kg-1 and 0.33 - 0.46 µg kg-1,
respectively. Relative standard deviation (RSD) was less than 8.02% and 5.48%
for intra-day (n = 5) and inter-day (n = 5) for the present method,
respectively. High pre-concentration factor (2587 - 2866) and satisfactory
recoveries (90.23 - 115.63%) were also achieved. The proposed method was found
to be simple, rapid and reliable for the monitoring of PAHs in rice samples.
Keywords: dispersive solid phase micro-extraction,
activated carbon, polycyclic aromatic hydrocarbons, rice samples
Abstrak
Pengekstrakan
mikro fasa pepejal berserak (DSPME) yang mudah berasaskan karbon diaktifkan
(AC) telah dijalankan untuk penentuan dan pengasingan hidrokarbon polisiklik
aromatik (PAHs) yang boleh menyebabkan barah iaitu phenantrena dan
fluorantena dalam sampel beras
putih, perang dan pra-rebus yang terpilih. Pengekstrakan dijalankan bersama
dengan - kromatografi gas - pengesan pengionan nyalaan (GC-FID)
untuk analisis. Dalam keadaan optimum [jumlah penyerapan (5 mg), jumlah isipadu
sampel (40 mL) dan jenis serta jumlah isipadu pelarut penyerapan
(diklorometana, 300 µL)], keluk penentukuran didapati bergerak lurus untuk
kepekatan antara 10 dan 1000 µg kg-1 dengan pekali penentuan (R2)
daripada 0.9938 hingga 0.9955. Had pengesanan (LOD) dan had kuantifikasi (LOQ),
masing-masing dalam julat 0.11 - 0.15 µg kg-1 dan 0.33 - 0.46 µg kg-1.
Berdasarkan kaedah yang sekarang, sisihan piawai relatif (RSD) menunjukkan
masing-masing kurang daripada 8.02% dan 5.48% untuk hari yang sama (n=5) dan
antara hari (n=5). Faktor prakepekatan tinggi (2587 - 2866) dan pemulihan yang
memuaskan (90.23 - 115.63%) juga dapat dicapai. Kaedah yang dicadangkan
didapati mudah, cepat dan boleh dipercayai untuk pemantauan PAH dalam sampel
beras.
Kata
kunci: pergekstrakan
mikro fasa pepejal dispersif, karbon diaktifkan, hidrokarbon polisiklik
aromatik, sampel beras
References
1. Mohanty, S. (2013) Trends in global rice consumption. Rice Today, 12: 44-45.
2. McGrath, T. E., Chan, W. G. and Hajaligol, M. R.
(2003). Low temperature mechanism for the formation of polycyclic aromatic
hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied
Pyrolysis., 66: 51-70.
3. Escarrone, A., Caldas, S., Furlong, E., Meneghetti,
V., Fagundes, C., Arias, J. and Primel, E. (2014). Polycyclic aromatic
hydrocarbons in rice grain dried by different processes: Evaluation of a quick,
easy, cheap, effective, rugged and safe extraction method. Food Chemistry,
146: 597-602.
4. Matin, A. A., Biparva, P. and Gheshlaghi, M. (2014).
Gas chromatographic determination of polycyclic aromatic hydrocarbons in water
and smoked rice samples after solid-phase microextraction using multiwalled
carbon nanotube loaded hollow fiber. Journal Chromatography A, 1374: 50-57.
5. Johnsen, A. R. and Karlson, U. (2005). PAH degradation
capacity of soil microbial communities; does it depend on PAH exposure?. Microbial
Ecology, 50: 488-495.
6. Eisler, R. (1987). Polycyclic aromatic hydrocarbon
hazards to fish, wildlife, and invertebrates: A synoptic review. Contaminant
Hazard Reviews Report, 11:
55.
7. Shahriman, M. S., Ramachandran, M. R., Zain, N. N. M.,
Mohamad, S., Manan, N. S. A. and Yaman, S. M. (2018). Polyaniline-dicationic
ionic liquid coated with magnetic nanoparticles composite for magnetic solid
phase extraction of polycyclic aromatic hydrocarbons in environmental samples. Talanta,
178: 211-221.
8. Yang, R., Zhou, R., Xie, T. and Jing, C. (2018).
Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake
sediment from the southern Tibetan plateau. Environmental Geochemistry Health., 40: 1899-1906.
9. Bertinetti, I. A., Ferreira, C. D., Monks, J. L. F.,
Sanches-Filho, P. J. and Elias, M. C. (2018). Accumulation of polycyclic
aromatic hydrocarbons (PAHs) in rice subjected to drying with different fuels
plus temperature, industrial processes and cooking. Journal Food Composition
Analysis, 66: 109-115.
10. Sarafraz-Yazdi, A., Ghaemi, F. and Amiri, A. (2012).
Comparative study of the solgel based solid phase microextraction fibers in
extraction of naphthalene, fluorene, anthracene and phenanthrene from saffron
samples extractants. Microchimica Acta, 176: 317-325.
11. Tsai, W. H., Huang, T. C., Huang, J. J., Hsue, Y. H.
and Chuang, H. Y. (2009). Dispersive solid-phase microextraction method for
sample extraction in the analysis of four tetracyclines in water and milk
samples by high-performance liquid chromatography with diode-array detection. Journal
of Chromatography. A, 1216:
2263-2269.
12. Anastassiades, M., Lehotay, S. J., tajnbaher, D. and Schenck,
F. J. (2003). Fast and easy multiresidue method employing acetonitrile
extraction/partitioning and dispersive solid-phase extraction for the
determination of pesticide residues in produce. Journal of AOAC International,
86: 412-431.
13. Ni, N., Wang, F., Song, Y., Bian, Y., Shi, R., Yang,
X., Gu, C. and Jiang, X. (2018). Mechanisms of biochar reducing the
bioaccumulation of PAHs in rice from soil: Degradation stimulation vs
immobilization. Chemosphere, 196:
288-296.
14. Gong, Z., Alef, K., Wilke, B. M. and Li, P. (2007).
Activated carbon adsorption of PAHs from vegetable oil used in soil
remediation. Journal Hazardous Materials, 143: 372-378.
15. Eeshwarasinghe, D., Loganathan, P. and Vigneswaran, S.
(2019). Simultaneous removal of polycyclic aromatic hydrocarbons and heavy
metals from water using granular activated carbon. Chemosphere, 223: 616-627.
16. Li, X., Wei, S., Sun, Y., Sun, Q., Liang, L., Zhang,
B., Piao, H., Song, D. and Wang, X. (2016). Glass slides functionalized by
1‐carboxyethyl‐3‐methylimidazolium chloride for the
determination of triazine herbicides in rice using high‐performance
liquid chromatography. Journal of Separation Sciences, 39: 4585-4591.
17. Boon, Y. H., Zain, N. N. M., Mohamad, S., Osman, H.
and Raoov, M. (2019). Magnetic poly (β-cyclodextrin-ionic liquid)
nanocomposites for micro-solid phase extraction of selected polycyclic aromatic
hydrocarbons in rice samples prior to GC-FID analysis. Food Chemistry, 278: 322-332.
18. Huang, X., Lu, Q., Hao, H., Wei, Q., Shi, B., Yu, J.,
Wang, C. and Wang, Y. (2019). Evaluation
of the treatability of various odor compounds by powdered activated carbon. Water
Research, 156: 414-424.
19. Saraji, M., Boroujeni, M. K., Bidgoli, A. A. H.
(2011). Comparison of dispersive liquidliquid microextraction and hollow fiber
liquidliquidliquid microextraction for the determination of fentanyl,
alfentanil, and sufentanil in water and biological fluids by high-performance
liquid chromatography. Analytical and Bioanalytical Chemistry, 400: 2149.
20. Galan-Cano, F., Alcudia-Leon, M. C., Lucena, R.,
Cardenas, S. and Valcarcel, M. (2013).
Ionic liquid coated magnetic nanoparticles for the gas
chromatography/mass spectrometric determination of polycyclic aromatic
hydrocarbons in waters. Journal of Chromatography A, 1300: 134-140.
21. Acree, Jr. W. E. (2013). IUPAC-NIST solubility data
series. 98. Solubility of polycyclic aromatic hydrocarbons in pure and organic
solvent mixtures revised and updated. Part 3. Neat organic solvents. Journal
of Physical and Chemical Reference Data, 42: 013105.
22. Lehotay, S., Schenck, F. (2000). Multi-residue
methods: Extraction encyclopaedia of separation science: pp. 3409-3415.
23. Zhao, G., Song, S., Wang, C., Wu, Q. and Wang, Z.
(2011). Determination of triazine herbicides in environmental water samples by
high-performance liquid chromatography using graphene-coated magnetic
nanoparticles as adsorbent. Analitica Chimica Acta, 708: 155-159.
24. Food Safety Authority of Ireland (2015). Polycyclic
aromatic hydrocarbons (PAHs) in food. Food
Safety Authority of Ireland, 2: 1-10.
25. Mohd Hassan, F. W., Raoov, M., Kamaruzaman, S.,
Sanagi, M. M., Yoshida, N., Hirota, Y., Nishiyama, N. and Yahaya, N. (2018).
Dispersive liquidliquid microextraction combined with dispersive
solid‐phase extraction for gas chromatography with mass spectrometry
determination of polycyclic aromatic hydrocarbons in aqueous matrices. Journal
of Separation Sciences, 41:
3751-3763.
26. Olatunji, O. S., Fatoki, O. S., Opeolu, B. O. and Ximba,
B. J. (2014). Determination of polycyclic aromatic hydrocarbons [PAHs] in
processed meat products using gas chromatography flame ionization detector. Food
Chemistry, 156: 296-300.