Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 838 - 847
VALIDATION AND DETERMINATION OF ASCORBIC ACID IN MULTIVITAMIN TABLETS BY
DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRIC TECHNIQUE AT A BARE GLASSY
CARBON ELECTRODE
(Validasi
dan Penentuan Asid Askorbik dalam Tablet Multivitamin Menggunakan Teknik
Voltammetrik Perlucutan Anodik Denyutan Pembezaan pada Elektrod Karbon Berkaca)
Nur
Syamimi Zainudin*, Siti Norbaitina Shaari, Megat Ahmad Kamal Megat Hanafiah
Faculty of Applied
Sciences,
Universiti Teknologi
MARA Pahang Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
*Corresponding
author: nursyamimizainudin@uitm.edu.my
Received: 8 August 2020;
Accepted: 29 September 2020; Published: 10 December 2020
Abstract
Growth
of multivitamin tablet production increases curiosity among the researchers
whether ascorbic acid (AA) content is in accordance with the standards or not. The differential pulse anodic stripping voltammetry (DPASV)
technique using bare glassy carbon electrode and phosphate buffer at pH 4.2 has
been proposed to analyse the ascorbic acid content. The experimental
voltammetric parameters were optimized to obtain a maximum response with
analytical validation of the technique. The optimum instrumental conditions for
electroanalytical determination of AA by the proposed DPASV technique were initial potential = 0 V, final potential = 0.7 V,
accumulation time = 60 s, scan rate = 0.125 V/s, accumulation potential = 0 V
and pulse amplitude = 0.150 V. The curve was linear
from 5 mg L-1 to 300 mg L-1 (R2 = 0.9999) with
detection limit of 0.25 mg L-1. The precisions in terms of relative
standard deviation (RSD) were 1.3%, 0.5% and 0.06%. The recoveries for AA
content in the two multivitamin tablets were 98% and 102%, respectively. It can
be concluded that the proposed technique is precise, accurate, rugged, low
cost, fast and has the potential to be an alternative method for routine
analysis of AA in other pharmaceutical products in future.
Keywords: ascorbic acid, glassy carbon electrode, voltammetry, multivitamin
Abstrak
Pertambahan penghasilan multivitamin dalam bentuk tablet
telah meningkatkan rasa ingin tahu para penyelidik samada kandungan asid
askorbik (AA) memenuhi piawaian atau tidak. Teknik perlucutan anodik denyutan
pembezaan yang menggunakan elektrod karbon berkaca tanpa pengubahsuaian
dan larutan penimbal fosfat (pH 4.2) telah dicadangkan untuk menganalisa
kandungan asid askorbik. Parameter-parameter eksperimen voltammetrik
dioptimakan untuk mendapatkan tindakbalas maksima diikuti dengan validasi atau
pengesahan teknik voltammetrik. Keadaan instrumentasi optima untuk penentuan AA
dengan menggunakan teknik DPASV yang dicadangkan adalah keupayaan awal = 0 V,
keupayaan akhir = 0.70 V, masa penjerapan = 60 s, kadar imbasan = 0.125 V/s,
keupayaan penjerapan = 0 V dan amplitud denyut = 0.15 V. Keluk penentukuran
adalah lurus daripada 5 mg L-1 to 300 mg L-1 (R2 =
0.9999) dengan had pengesanan 0.25 mg L-1. Kejituan dalam bentuk
sisihan piawai relatif adalah 1.3%, 0.5% and 0.06%. Perolehan semula peratusan
kandungan AA di dalam dua tablet multivitamin adalah 98% dan 102%.
Kesimpulannya, teknik yang dicadangkan adalah jitu, tepat, tahan lasak,
melibatkan kos yang rendah, cepat dan berpotensi untuk menjadi satu kaedah
alternatif untuk menganalisa AA dalam produk pharmaseutikal yang lain pada masa
akan datang.
Kata kunci: asid askorbik, electrod
karbon berkaca, voltammetri, multivitamin
References
1. Eggersdorfer, M., Laudert, D., Letinos, U.,
McClymont, T., Medlock, J., Netscher, T. and Bonranth, W. (2012). One hundred
years of vitamins-A success story of the natural science. Angewandte Chemie,
51: 12960-12990.
2. Zhang, Y., Zhou, W., Yan, J., Liu, M., Zhou, Y.,
Shen, X., Ma, Y., Feng, X., Yang, J. and Li, G. (2018). A review of the
extraction and determination methods of thirteen essential vitamins to the
human body: An update from 2010. Molecules, 23: 1-25.
3. Masoud, R.S., and Zahra, A. (2014). A highly
sensitive kinetic spectrophotometric method for the determination of ascorbic
acid in pharmaceutical samples. Iranian Journal of Pharmaceutical Research,
13(2): 372-382.
4. Packer, L., and Fuchs, J. (1997). Vitamin C in
health and disease. CRC Press: pp. 1-525.
5. Yilmaz, S., Sadikoglu, M., Saglikoglu, G., Yagmur,
S. and Askin, G. (2008). Determination of ascorbic acid in tablet dosage forms
and some fruit juices by DPV. International Journal of Electrochemical
Science. 3: 1534-1542.
6. Sona, S., Jiri, M., Jiri, S., Mojmir, B., Jindrich,
K. and Tunde, J. (2015). Determination of ascorbic acid by electrochemical
techniques and other methods. International Journal of Electrochemical
Science, 10: 2421-2431.
7. Pisoschi, A. M., Pop, A., Negulescu, G. P., and
Pisoschi, A. (2011). Determination of ascorbic acid content of some fruit
juices and wine by voltammetry performed at Pt and carbon paste electrodes. Molecules,
16: 1349-1365.
8. Sadia, G., Azizuddin., Rafi, A., Kousar, Y.,
Fareed, A. and Iftekhar, S. (2014). Determination of ascorbic acid content of
some capsicum cultivars by cyclic voltammetry performed at GCE by external
standard series calibration method. International Journal of Electrochemical
Science, 9: 5751-5762.
9. Snezana, S. M., Danijela, A. K., Danijela, C. N. D.,
and Milan, N. M. (2011). Rapid and reliable HPLC method for the determination
of vitamin C in pharmaceutical samples. Tropical Journal of Pharmaceutical
Research, 10(1): 105-111.
10. Rahman, M. M., Khan, M. M. R., and Hosain, M. M.
(2007). Analysis of vitamin c (ascorbic acid) contents in various fruits and
vegetables by UV-spectrophotometry. Bangladesh Journal of Scientific and
Industrial Research, 42: 417-424.
11. Gazdik, Z., Zitka, O., Petrlova, J., Adam, V.,
Zehnalek, J., Horna, A., Reznicek, V., Beklova, M. and Kizek, R. (2008). Determination
of vitamin C (ascorbic acid) using high performance liquid chromatography
coupled with electrochemical detection. Sensors, 8: 7097-7112.
12. Papuc, C., Pop, A., Serban, M. (2001). Metode analitice
in biochimia veterinara. editura printech (Bucharest) 2001: pp. 167-169.
13. Matei, N., Magearu, V., Bieghila, S., Dobrinas, S. (2004).
The determination of vitamin C from sweet cherries and cherries. Revista de
Chimie (Bucharest), 55: 294-296.
14. Santos, J., Mendiola, J. A., Oliveira, M. B.,
Ibáñez, E. and Herrero, M. (2012). Sequential determination of fat-and
water-soluble vitamins in green leafy vegetables during storage. Journal of
Chromatography A, 1261: 179-188.
15. Klimczak, I. and Gliszczy´nska-Swigło, A. (2015).
Comparison of UPLC and HPLC methods for determination of vitamin C. Food
Chemistry. 175: 100-105.
16. Mohamed, A. M. I., Mohamed, H. A., Abdel-Latif, N. M.
and Mohamed, M. R. A. (2011). Spectrofluorimetric determination of some
water-soluble vitamins. Journal of AOAC International, 94: 1758-1769.
17. Mohamed, A. M., Mohamed, H. A., Mohamed, N. A. and
El-Zahery, M. R. (2011). Chemometric methods for the simultaneous determination
of some water-soluble vitamins. Journal of AOAC International. 94: 467-481.
18. Da Silva, D. C, Visentainer, J. V., de Souza, N. E.,
and Oliveira, C. C. (2013). Micellar electrokinetic chromatography method for
determination of the ten water-soluble vitamins in food supplements. Food
Analytical Methods, 6: 1592-1606.
19. Aurora-Prado, M. S., Silva, C. A., Tavares, M. F. M.,
and Altria, K. D. (2010). Rapid determination of water-soluble and fat-soluble
vitamins in commercial formulations by MEEKC. Chromatographia. 72:
687694.
20. Borowski, J., Szajdek, A., Borowska, E. J., Ciska,
E., and Zielinski, H. (2008). Content of selected bioactive components and antioxidant
properties of broccoli (Brassica oleracea L.). European Food
Research and Technology. 226: 459-465.
21. Radulescu, M. C., Bucur, B., Bucur, M. P. and Radu,
G. L. (2014). Bienzymatic Biosensor for rapid detection of aspartame by flow
injection analysis. Sensors, 14: 1028-1038.
22. Amorello, D. and Orecchio, S. (2013). Micro-determination
of dithiocarbamates in pesticide formulations using voltammetry. Microchemical Journal, 110: 334-339.
23. Zhao, X., Tao, X., Wei, D. and Song, Q. (2006). Pharmacological
activity and hydrolysis behaviour of novel ibuprofen glucopyranoside conjugates.
European Journal of Medicinal Chemistry, 41: 1352-1358.
24. Nezamzadeh, A., Amini, M. K. and Faghihian, H. (2007).
Square-wave voltammetric determination of ascorbic acid base on its
electrocatalytic oxidation at zeolite-modified carbon-paste electrodes. International
Journal of Electrochemical Science. 2: 583-594.
25. Raoof, J. B., Ojani R. and Beitollahi, H. (2007). Electrocatalytic
determination of ascorbic acid at chemically modified carbon paste electrode
with 2, 7-bis (ferrocenyl ethynyl) fluoren-9-one. International Journal of
Electrochemical Science, 2: 534-548.
26. Beitollahi, H., Ardakani, M. M., Naeimi H. and
Ganjipour, B. (2009). Electrochemical characterization of
2,2[1,2-ethanediylbis(nitriloethylidine)]-bis-hydroquinone-carbon nanotube
paste electrode and its application to simultaneous voltammetric determination
of ascorbic and uric acid. Journal of Solid State Electrochemistry, 13:
353-363.
27. Motahary, M., Ghoreishi, S. M., Behpour M. and
Golestaneh, M. (2010). Electrochemical determination of ascorbic acid at the
surface of a graphite electrode modified with a multi-walled carbon
nanotubes/tetradecyltrimethylammonium bromide. Journal of Applied
Electrochemistry, 40: 841-847.
28. Zhao, G. H., Li, M. F., Li, M. L. (2007). Differetial
pulse voltammetric determination of dopamine with the coexistence of ascorbic
acid on boron-doped diamond surface. Central European Journal of Chemistry,
5: 1114-1123.
29. Raoof, J. B., Kiani, A., Ojani, R., Valiollahi, R. and
Rashid-Nadimi, S. (2010). Simultaneous voltammetric determination of ascorbic
acidand dopamine at the surface of electrodes modified with self-assembled gold
nanoparticle films. Journal of Solid State Electrochemistry, 14: 1171-1176.
30. Cofan, C., Radovan, C. and Cinghita, D. (2009). Sumultaneous
anodic assessment of ascorbic acid and acetaminophen in unbuffered solutions. Revista
de Chimie. 60: 368-372.
31. Miranda, M. P., del Rio, R., del Valle, M. A.,
Faundez, M. and Armijo, F. (2012). Use of fluorine-doped tin oxide electrodes
for lipoic acid determination in dietary supplements. Journal of Electroanalytical Chemistry. 668: 1-6.
32. Barbara, Z. (2011). Voltammetric determination of
vitamin C on a carbon electrode. Monograph: Electrochemistry, A Laboratory
Textbook, Switzerland: pp 35-38,.
33. vorc, L., Sochr, J., Svĭtková, J., Riejav, M.
and Bustin, D. (2013). Rapid and sensitive electrochemical determination of
codeine in pharmaceutical formulations and human urine using a boron-doped
diamond film electrode. Electrochimica
Acta, 87: 503-510.
34. Nur Syamimi, Z., Mohamad Hadzri, Y. and Noor
Zuhartini, M. M. (2016). Voltammetric determination of Reactive Black 5 in wastewater
samples from the batik industry. Malaysian Journal of Analytical Science,
20: 1254-1268.
35. Jain, R. and Sharma, S. (2012). Glassy carbon
electrode modified with multi-walled carbon nanotubes sensor for the
quantification of antihistamine drug pheniramine in solubilized systems. Journal of Pharmaceutical Analysis, 2(1): 56-61.
36. Geremedhin, W., Amare, M. and Admassie, S. (2013). Electrochemically
pretreated glassy carbon electrode for electrochemical detection of
fenitrothion in tap water and human urine. Electrochimica
Acta, 87: 749-755.
37. De Lima, F., Gozzi, F., Fiorucci, A. R., Cardoso,
C. A. L., Arruda, G. J. and Ferreira, V. S. (2011). Determination of linuron in
water and vegetable samples using stripping voltammetry with carbon paste
electrode. Talanta, 83: 1763-1768.
38. Ngai, K. S, Tan, W. T, Zulkarnain, Z., Ruzniza, M. Z.
and Mohammed, Z. (2013). Voltammetry detection of ascorbic acid at glassy
carbon electrode modified by single-walled carbon nanotube/zinc oxide.
International Journal of Electrochemical Science, 8: 10557-10567.
39. Jain, R. and Rather, J. A. (2011). Stripping
voltammetry of tinidazole in solubilized system and biological fluids. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 378:
27-33.