Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 848 - 854
PHYSICOCHEMICAL COMPOSITION OF SPENT OYSTER
MUSHROOM SUBSTRATE
(Komposisi Fizikokimia bagi Sisa Substrat Cendawan Tiram)
Aina Nasuha Mortada,
Mohamad Hasnul Bolhassan*, Rafeah Wahi
Faculty of Resource
Science and Technology,
Universiti Malaysia
Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
*Corresponding
author: bmhasnul@unimas.my
Received: 8 July 2020;
Accepted: 22 September 2020; Published: 10 December 2020
Abstract
Mushroom
substrate is a type of lignocellulosic material that helps promote the growth,
production, and fruiting of mushrooms. The substrate contains components rich
in organic matter due to the modification of the material after harvesting of
mushrooms. This study analysed the physicochemical composition of spent oyster
mushroom substrate (SOMS) by comparing with sterile fresh mushroom substrate
(SFMS). The physicochemical analyses conducted were moisture content, ash
content, pH, primary macronutrients (nitrogen, phosphorus, and potassium),
secondary macronutrients (calcium and magnesium), micronutrients (iron,
manganese, copper, and zinc), and carbon-to-nitrogen (C:N) ratio. The results
obtained for moisture content, ash content, pH, and C:N ratio showed higher
values for SOMS. The values of moisture, ash content, pH, and C:N ratio
increased to 63.00%, 6.58%, 5.92, and 116.29, respectively. For the nutrients
in the mushroom substrate, namely phosphorus, calcium, magnesium, iron, and
copper, the values after cultivation increased to 57.14 ppm, 7366.67 ppm,
1230.83 ppm, 85.18 ppm, and 3.75 ppm, respectively. Meanwhile, the values of
nitrogen, potassium, zinc, and manganese decreased to 0.38%, 706.67 ppm, 16.90
ppm, and 68.65 ppm, respectively. Sulphur content was detected in SFMS but
absent in SOMS. In conclusion, mushroom cultivation changed the physicochemical
composition of the mushroom substrate.
Keywords: mushroom
substrate, comparison, physicochemical analysis
Abstrak
Substrat cendawan merupakan sejenis bahan yang membantu
dalam menggalakkan pertumbuhan, pengeluaran dan penghasilan jana buah cendawan.
Ia mengandungi komponen yang kaya dengan bahan organik hasil daripada
pengubahsuaian kandungan bahan selepas penuaian cendawan. Kajian ini telah
menganalisis komposisi fizikokimia sisa substrat cendawan tiram dibandingkan
dengan substrat cendawan segar steril. Analisis fizikokimia seperti kelembapan,
kandungan abu, pH, makronutrien primer (nitrogen, fosforus, dan kalium), makronutrien
sekunder (kalsium dan magnesium), mikronutrien (besi, mangan, tembaga, dan
zink), dan nisbah C:N. Keputusan yang diperolehi untuk kelembapan, kandungan
abu, pH, dan nisbah C:N menunjukkan nilai yang lebih tinggi untuk sisa substrat
cendawan tiram. Peratusan bagi kelembapan meningkat kepada 63.00%, kandungan
abu kepada 6.58%, pH kepada 5.92, dan nisbah C:N kepada 116.29. Bagi nutrien
dalam sisa substrat cendawan, iaitu fosforus, kalsium, magnesium, besi, dan
tembaga, menunjukkan peningkatan selepas penanaman kepada 57.14 ppm, 7366.67
ppm, 1230.83 ppm, 85.18 ppm, dan 3.75 ppm. Bagi nitrogen, kalium, zink, dan
mangan, telah menunjukkan penurunan peratusan kepada 0.38%, 706.67 ppm, 16.90
ppm, dan 68.65 ppm. Bagi substrat cendawan segar steril, kandungan sulfat telah
dikesan tetapi tidak bagi sisa substrat cendawan. Proses penanaman cendawan
telah merubah komposisi fizikokimia dalam substrat cendawan.
Kata kunci: substrat cendawan, perbandingan, analisis
fizikokimia
References
1.
Miles, P. G. and Chang,
S. T. (2004). Mushrooms: cultivation, nutritional value, medicinal effect, and environmental
impact. CRC press.
2.
Assan, N. and Mpofu, T.
(2014). The influence of substrate on mushroom productivity. Scientific
Journal of Crop Science, 3(7): 86-91.
3.
Rasib, N. A. A., Zakaria,
Z., Tompang, M. F., Rahman, R. A. and Othman, H. (2015). Characterization of
biochemical composition for different types of spent mushroom substrate in
Malaysia. Malaysian Journal Analytical Sciences, 19(1): 41-45.
4.
Sidik, M. A. B., Buntat,
Z., Razali, M. C., Buntat, Y., Nawawi, Z., Jambak, M. I. and Smith, I. R.
(2015). A new method to sterilise mushroom substrate for oyster mushroom
cultivation. International Journal of Emerging Trends Science Technology,
4: 1-18.
5.
Ficior, D., Indrea, D.,
Apahidean, A. S., Apahidean, M., Rodica, P. O. P., Moldovan, Z. and Paven, I.
(2006). Importance of substrate disinfection on Oyster mushroom (Pleurotus sp.)
culture. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 34: 48.
6.
Hoa, H. T., Wang, C. L.
and Wang, C. H. (2015). The effects of different substrates on the growth,
yield, and nutritional composition of two oyster mushrooms (Pleurotus
ostreatus and Pleurotus cystidiosus). Mycobiology, 43(4):
423-434.
7.
Bellettini, M. B.,
Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S. and Ribani,
R. H. (2019). Factors affecting mushroom Pleurotus spp. Saudi Journal
of Biological Sciences, 26(4): 633-646.
8.
Carrasco, J., Zied, D.
C., Pardo, J. E., Preston, G. M. and Pardo-Giménez, A. (2018). Supplementation
in mushroom crops and its impact on yield and quality. AMB Express, 8(1):
146.
9. Moonmoon, M., Shelly, N. J., Khan, M. A., Uddin, M.
N., Hossain, K., Tania, M. and Ahmed, S. (2011). Effects of different levels of
wheat bran, rice bran and maize powder supplementation with saw dust on the
production of shiitake mushroom (Lentinus edodes (Berk.) Singer). Saudi
Journal of Biological Sciences, 18(4): 323-328.
10.
Jafarpour,
M., Jalali, A., Dehdashtizadeh, B. and Eghbalsaied, S. (2010). Evaluation of
agricultural wastes and food supplements usage on growth characteristics of Pleurotus
ostreatus. African Journal of Agricultural Research, 5(23):
3291-3296.
11.
Fidanza, M. A., Sanford,
D. L., Beyer, D. M. and Aurentz, D. J. (2010). Analysis of fresh mushroom
compost. HortTechnology, 20(2): 449-453.
12. Medina, E., Paredes, C., Bustamante, M. A., Moral,
R. and Moreno-Caselles, J. (2012). Relationships between soil physico-chemical,
chemical and biological properties in a soil amended with spent mushroom
substrate. Geoderma, 173: 152-161.
13. Ashrafi, R., Rahman, M. M., Jahiruddin, M. and Mian,
M. H. (2014). Quality assessment of compost prepared from spent mushroom
substrate. Progressive Agriculture, 25: 1-8.
14.
Hui, Z., Jianhua, L., Dai
Jianqing, C. M. and Yi, C. (2007). The alternative uses of spent mushroom compost.
Spore, 2007: pp. 1-22.
15.
Koshy, J. and Nambisan,
P. (2012). Ethanol production from spent substrate of Pleurotus eous. International
Journal of Applied Biology and Pharmaceutical Technology, 3(1): 280-286.
16. Frank,
K., Beegle, D. and Denning, J. (2012). Phosphorus. In M.V. Nathan and R.
Gelderman (Eds.), Recommended chemical
soil test procedures for the North Central Region (2012 Revision). Missouri,
USA: Missouri Agricultural Experiment Station.
17. Warncke,
D. and Brown, J. R. (2012). Potassium and other basic cations. In M.V. Nathan
and R. Gelderman (Eds.), Recommended
chemical soil test procedures for the North Central Region (2012 Revision).
Missouri, USA: Missouri Agricultural Experiment Station.
18.
Zbíral, J. (2016).
Determination of plant-available micronutrients by the Mehlich 3 soil
extractant–a proposal of critical values. Plant, Soil and Environment, 62(11):
527-531.
19.
Lopez Castro, R. I.,
Delmastro, S. and Curvetto, N. R. (2008). Spent mushroom substrate in a mix
with organic soil for plant pot cultivation. Micologia Aplicada International, 20(1): 17-26.
20. Sultana, R., Hossain, M. I., Amin, R. and Chakraborty,
R. (2018). Influence of substrate pH and watering frequency on the growth of
oyster mushroom. International Journal of Plant Biology & Research, 6(4):
1097.
21.
Paredes, C., Moral, R., Pérez-Murcia, M. D.,
Moreno-Caselles, J. and Pérez-Espinosa, A. (2006). Agricultural value of the
spent mushroom substrate. Technology for recycling of manure and organic
residues in a whole-farm perspective. Danish Institute of Agricultural
Sciences, Ministry of Food, Agricultural Sciences, Tjele: pp. 301-304
22. Sendi, H., Mohamed, M. T. M., Anwar, M. P. and Saud,
H. M. (2013). Spent mushroom waste as a media replacement for peat moss in
Kai-Lan (Brassica oleracea var. Alboglabra) production. The
Scientific World Journal, 2013: 258562.
23. Owaid, M. N., Abed, I. A. and Al-Saeedi, S. S. S.
(2017). Applicable properties of the bio-fertilizer spent mushroom substrate in
organic systems as a byproduct from the cultivation of Pleurotus spp. Information
Processing in Agriculture, 4(1): 78-82.
24. Alananbeh, K. M., Bouqellah, N. A. and Al Kaff, N.
S. (2014). Cultivation of oyster mushroom Pleurotus ostreatus on
date-palm leaves mixed with other agro-wastes in Saudi Arabia. Saudi journal
of Biological Sciences, 21(6): 616-625.
25. Hanafi, F. H. M., Rezania, S., Taib, S. M., Din, M.
F. M., Yamauchi, M., Sakamoto, M. and Ebrahimi, S. S. (2018). Environmentally
sustainable applications of agro-based spent mushroom substrate (SMS): an
overview. Journal of Material Cycles and Waste Management, 20(3):
1383-1396.
26. Medina, E., Paredes, C., Pérez-Murcia, M. D.,
Bustamante, M. A. and Moral, R. (2009). Spent mushroom substrates as component
of growing media for germination and growth of horticultural plants. Bioresource
Technology, 100(18): 4227-4232.