Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 848 - 854

 

 

 

 

PHYSICOCHEMICAL COMPOSITION OF SPENT OYSTER MUSHROOM SUBSTRATE

 

(Komposisi Fizikokimia bagi Sisa Substrat Cendawan Tiram)

 

Aina Nasuha Mortada, Mohamad Hasnul Bolhassan*, Rafeah Wahi

 

Faculty of Resource Science and Technology,

Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia

 

*Corresponding author:  bmhasnul@unimas.my

 

 

Received: 8 July 2020; Accepted: 22 September 2020; Published:  10 December 2020

 

 

Abstract

Mushroom substrate is a type of lignocellulosic material that helps promote the growth, production, and fruiting of mushrooms. The substrate contains components rich in organic matter due to the modification of the material after harvesting of mushrooms. This study analysed the physicochemical composition of spent oyster mushroom substrate (SOMS) by comparing with sterile fresh mushroom substrate (SFMS). The physicochemical analyses conducted were moisture content, ash content, pH, primary macronutrients (nitrogen, phosphorus, and potassium), secondary macronutrients (calcium and magnesium), micronutrients (iron, manganese, copper, and zinc), and carbon-to-nitrogen (C:N) ratio. The results obtained for moisture content, ash content, pH, and C:N ratio showed higher values for SOMS. The values of moisture, ash content, pH, and C:N ratio increased to 63.00%, 6.58%, 5.92, and 116.29, respectively. For the nutrients in the mushroom substrate, namely phosphorus, calcium, magnesium, iron, and copper, the values after cultivation increased to 57.14 ppm, 7366.67 ppm, 1230.83 ppm, 85.18 ppm, and 3.75 ppm, respectively. Meanwhile, the values of nitrogen, potassium, zinc, and manganese decreased to 0.38%, 706.67 ppm, 16.90 ppm, and 68.65 ppm, respectively. Sulphur content was detected in SFMS but absent in SOMS. In conclusion, mushroom cultivation changed the physicochemical composition of the mushroom substrate.

 

Keywords:  mushroom substrate, comparison, physicochemical analysis

 

Abstrak

Substrat cendawan merupakan sejenis bahan yang membantu dalam menggalakkan pertumbuhan, pengeluaran dan penghasilan jana buah cendawan. Ia mengandungi komponen yang kaya dengan bahan organik hasil daripada pengubahsuaian kandungan bahan selepas penuaian cendawan. Kajian ini telah menganalisis komposisi fizikokimia sisa substrat cendawan tiram dibandingkan dengan substrat cendawan segar steril. Analisis fizikokimia seperti kelembapan, kandungan abu, pH, makronutrien primer (nitrogen, fosforus, dan kalium), makronutrien sekunder (kalsium dan magnesium), mikronutrien (besi, mangan, tembaga, dan zink), dan nisbah C:N. Keputusan yang diperolehi untuk kelembapan, kandungan abu, pH, dan nisbah C:N menunjukkan nilai yang lebih tinggi untuk sisa substrat cendawan tiram. Peratusan bagi kelembapan meningkat kepada 63.00%, kandungan abu kepada 6.58%, pH kepada 5.92, dan nisbah C:N kepada 116.29. Bagi nutrien dalam sisa substrat cendawan, iaitu fosforus, kalsium, magnesium, besi, dan tembaga, menunjukkan peningkatan selepas penanaman kepada 57.14 ppm, 7366.67 ppm, 1230.83 ppm, 85.18 ppm, dan 3.75 ppm. Bagi nitrogen, kalium, zink, dan mangan, telah menunjukkan penurunan peratusan kepada 0.38%, 706.67 ppm, 16.90 ppm, dan 68.65 ppm. Bagi substrat cendawan segar steril, kandungan sulfat telah dikesan tetapi tidak bagi sisa substrat cendawan. Proses penanaman cendawan telah merubah komposisi fizikokimia dalam substrat cendawan.

 

Kata kunci:  substrat cendawan, perbandingan, analisis fizikokimia

 

References

1.      Miles, P. G. and Chang, S. T. (2004). Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC press.

2.      Assan, N. and Mpofu, T. (2014). The influence of substrate on mushroom productivity. Scientific Journal of Crop Science, 3(7): 86-91.

3.      Rasib, N. A. A., Zakaria, Z., Tompang, M. F., Rahman, R. A. and Othman, H. (2015). Characterization of biochemical composition for different types of spent mushroom substrate in Malaysia. Malaysian Journal Analytical Sciences, 19(1): 41-45.

4.      Sidik, M. A. B., Buntat, Z., Razali, M. C., Buntat, Y., Nawawi, Z., Jambak, M. I. and Smith, I. R. (2015). A new method to sterilise mushroom substrate for oyster mushroom cultivation. International Journal of Emerging Trends Science Technology, 4: 1-18.

5.      Ficior, D., Indrea, D., Apahidean, A. S., Apahidean, M., Rodica, P. O. P., Moldovan, Z. and Paven, I. (2006). Importance of substrate disinfection on Oyster mushroom (Pleurotus sp.) culture. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 34: 48.

6.      Hoa, H. T., Wang, C. L. and Wang, C. H. (2015). The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology, 43(4): 423-434.

7.      Bellettini, M. B., Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S. and Ribani, R. H. (2019). Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26(4): 633-646.

8.      Carrasco, J., Zied, D. C., Pardo, J. E., Preston, G. M. and Pardo-Giménez, A. (2018). Supplementation in mushroom crops and its impact on yield and quality. AMB Express, 8(1): 146.

9.      Moonmoon, M., Shelly, N. J., Khan, M. A., Uddin, M. N., Hossain, K., Tania, M. and Ahmed, S. (2011). Effects of different levels of wheat bran, rice bran and maize powder supplementation with saw dust on the production of shiitake mushroom (Lentinus edodes (Berk.) Singer). Saudi Journal of Biological Sciences, 18(4): 323-328.

10.   Jafarpour, M., Jalali, A., Dehdashtizadeh, B. and Eghbalsaied, S. (2010). Evaluation of agricultural wastes and food supplements usage on growth characteristics of Pleurotus ostreatus. African Journal of Agricultural Research, 5(23): 3291-3296.

11.   Fidanza, M. A., Sanford, D. L., Beyer, D. M. and Aurentz, D. J. (2010). Analysis of fresh mushroom compost. HortTechnology, 20(2): 449-453.

12.   Medina, E., Paredes, C., Bustamante, M. A., Moral, R. and Moreno-Caselles, J. (2012). Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma, 173: 152-161.

13.   Ashrafi, R., Rahman, M. M., Jahiruddin, M. and Mian, M. H. (2014). Quality assessment of compost prepared from spent mushroom substrate. Progressive Agriculture, 25: 1-8.

14.   Hui, Z., Jianhua, L., Dai Jianqing, C. M. and Yi, C. (2007). The alternative uses of spent mushroom compost. Spore, 2007: pp. 1-22.

15.   Koshy, J. and Nambisan, P. (2012). Ethanol production from spent substrate of Pleurotus eous. International Journal of Applied Biology and Pharmaceutical Technology, 3(1): 280-286.

16.   Frank, K., Beegle, D. and Denning, J. (2012). Phosphorus. In M.V. Nathan and R. Gelderman (Eds.), Recommended chemical soil test procedures for the North Central Region (2012 Revision). Missouri, USA: Missouri Agricultural Experiment Station.

17.   Warncke, D. and Brown, J. R. (2012). Potassium and other basic cations. In M.V. Nathan and R. Gelderman (Eds.), Recommended chemical soil test procedures for the North Central Region (2012 Revision). Missouri, USA: Missouri Agricultural Experiment Station.

18.   Zbíral, J. (2016). Determination of plant-available micronutrients by the Mehlich 3 soil extractant–a proposal of critical values. Plant, Soil and Environment, 62(11): 527-531.

19.   Lopez Castro, R. I., Delmastro, S. and Curvetto, N. R. (2008). Spent mushroom substrate in a mix with organic soil for plant pot cultivation. Micologia Aplicada International, 20(1): 17-26.

20.   Sultana, R., Hossain, M. I., Amin, R. and Chakraborty, R. (2018). Influence of substrate pH and watering frequency on the growth of oyster mushroom. International Journal of Plant Biology & Research, 6(4): 1097.

21.   Paredes, C., Moral, R., Pérez-Murcia, M. D., Moreno-Caselles, J. and Pérez-Espinosa, A. (2006). Agricultural value of the spent mushroom substrate. Technology for recycling of manure and organic residues in a whole-farm perspective. Danish Institute of Agricultural Sciences, Ministry of Food, Agricultural Sciences, Tjele: pp. 301-304

22.   Sendi, H., Mohamed, M. T. M., Anwar, M. P. and Saud, H. M. (2013). Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) production. The Scientific World Journal, 2013: 258562.

23.   Owaid, M. N., Abed, I. A. and Al-Saeedi, S. S. S. (2017). Applicable properties of the bio-fertilizer spent mushroom substrate in organic systems as a byproduct from the cultivation of Pleurotus spp. Information Processing in Agriculture, 4(1): 78-82.

24.   Alananbeh, K. M., Bouqellah, N. A. and Al Kaff, N. S. (2014). Cultivation of oyster mushroom Pleurotus ostreatus on date-palm leaves mixed with other agro-wastes in Saudi Arabia. Saudi journal of Biological Sciences, 21(6): 616-625.

25.   Hanafi, F. H. M., Rezania, S., Taib, S. M., Din, M. F. M., Yamauchi, M., Sakamoto, M. and Ebrahimi, S. S. (2018). Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview. Journal of Material Cycles and Waste Management, 20(3): 1383-1396.

26.   Medina, E., Paredes, C., Pérez-Murcia, M. D., Bustamante, M. A. and Moral, R. (2009). Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresource Technology, 100(18): 4227-4232.