Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 830 - 837

 

 

 

 

STUDY ON THE OXIDATION AND PROPERTIES OF DIHYDROXYL CELLULOSE USING DIFFERENT AMOUNTS OF SODIUM PERIODATE

 

(Kajian ke atas Pengoksidaan dan Pencirian bagi Dihidroksil Selulosa Menggunakan Kuatiti Natrium Periodat yang Berbeza)

 

Nur Nadia Dzulkifli*, Nur Wahibah Mohd Zaki, Ahmad Husaini Mohamed, Nor Monica Ahmad, Sheikh Ahmad Izaddin Sheikh Mohd Ghazali

 

School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA Negeri Sembilan Branch, Kuala Pilah Campus,

Pekan Parit Tinggi 72000 Kuala Pilah, Negeri Sembilan

 

*Corresponding author:  nurnadia@uitm.edu.my

 

 

Received: 23 July 2020; Accepted: 23 September; Published:  10 December 2020

 

 

Abstract

Sodium periodate is as an oxidizing agent that breaks the cellulose ring at the C2-C3 bond of the anhydroglucose units (AGU) by creating two vicinal hydroxyl groups which have the potential to form a Schiff base for further reactions. The objective of this study was to evaluate the effects of different amounts of sodium periodate on the formation and arrangement of hydroxyl groups at the C2-C3 bond of the anhydroglucose units (AGU), which is so-called dihydroxyl cellulose (DHC). Firstly, microcrystalline cellulose (MCC) was sonicated to break down the intermolecular and intramolecular interactions. Then, MCC was oxidized with 3 g and 5 g of sodium periodate to prepare the DHC compounds. The DHC and MCC were characterized by FTIR-ATR, FESEM, TGA, and XRD techniques. The numbers of hydroxyl group of DHC increased with the addition of sodium periodate. Besides, the thermal stability and crystallinity of DHC was found to be higher with the increasing amount of sodium periodate. Lastly, the morphology of DHC was found to be smooth, needle- (1:3) and leaf-like (1:5) structure as compared to the irregular forms of MCC. Difference of thermal stability, crystallinity, and morphological structure of DHC compounds concluded that different amounts of sodium periodate could modify the physicochemical properties of MCC.

 

Keywords:   microcrystalline cellulose, dihydroxyl cellulose, sodium periodate, oxidation

 

Abstrak

Sodium periodat adalah agen pengoksidaan yang membuka gegelang selulosa di ikatan C2-C3 pada unit anhidroglukosa (AGU) dengan mewujudkan dua kumpulan visinal hidroksi yang berpotensi untuk membentuk Bes Schiff bagi tindak balas selanjutnya. Objektif kajian ini ialah untuk menilai kesan perbezaan kuantiti natrium periodat ke atas pembentukan dan susunan kumpulan hidroksil di ikatan C2-C3 pada unit anhidroglukosa (AGU), yang dikenali sebagai dihidroksi selulosa (DHC). Pertamanya, mikrohablur selulosa (MCC) telah disonikasi untuk memutuskan interaksi intermolekul dan intramolekul, Kemudian, MCC dioksidakan dengan 3g dan 5g natrium periodat untuk menyediakan sebatian DHC. DHC dan MCC dicirikan dengan teknik FTIR-ATR, FESEM, TGA, dan XRD. Bilangan kumpulan hidroksil bagi DHC meningkat dengan penambahan kuantiti natrium periodat. Disamping itu, kestabilan haba dan kehabluran DHC dikenalpasti adalah tinggi dengan peningkatan kuantiti natrium periodat. Terakhir, morfologi DHC dikenalpasti adalah licin, struktur yang menyerupai jejarum (1:3) dan dedaun (1:5) berbanding dengan bentuk yang tidak teratur bagi MCC.  Perbezaan kestabilan haba, kehabluran dan struktur morfologi sebatian DHC dapat disimpulkan bahawa perbezaan kuantiti natrium periodat berupaya mengubah sifat fizik-kimia MCC.     

 

Kata kunci:   mikrohablur selulosa, dihidroksi selulosa, natrium periodat, pengoksidaan

 

References

1.      Cunzhen, G., Zhihui, Z., Zhixin, X., Peilong, X. and Yanzhi, Xia. (2019). Preparation of ion-exchanged TEMPO-oxidized celluloses as flame retardant products. Molecules, 24:1-10.

2.      Zuwu, T.,Wenyan, L., Xinxing, L., He, X., Qingxian, M., Liulian, H., Lihui, C. and Hui, W. (2017). TEMPO-oxidized cellulose with high degree of oxidation. Polymers, 9(9): 421.

3.      Lin, X., Ma, W., Wu, H., Huang, L., Chen, L. and Takahara, A. (2017). Fabrication of cellulose based super hydrophobic microspheres for the production of magnetically actuatable smart liquid marbles. Journal of Bioresources and Bioproducts, 2:110-115.

4.      Weng, R., Chen, L., Lin, S., Zhang, H., Wu, H., Liu, K., Cao, S. and Huang, L. (2017). Preparation and characterization of antibacterial cellulose/chitosan nanofiltration membranes. Polymers, 9(116):1-13.

5.      Luo, C. C.,Wang, H. and Chen, Y. (2015). Progress in modification of cellulose and application. Chemical Industry and Engineering Progress, 34(3):767-773.

6.      Liu, P., Pang, B., Tian, L., Schafer, T., Gutmann, T., Liu, H., Volkert, C. A., Buntkowsky, G. and Zhang, K. (2018). Efficient, self-terminating isolation of cellulose nanocrystals through periodate oxidation in pickering emulsions. ChemSusChem, 11(20): 3581-3585.

7.      Ruan, C. Q., Stromme, M. and Lindh, J. (2018). Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydrate Polymers, 181:200-207.

8.      Liming, Z., Huanhuan, G., Meng, X., Jie, C. and Yujie, D. (2017). Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose, 24: 2287-2298.

9.      Zaman, M., Xiao, H., Chibante, F. and Ni, Y. (2012). Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydrate Polymers, 89:163-170.

10.   Anjali, T. (2012). Modification of carboxymethyl cellulose through oxidation Carbohydrate polymers, 87(1): 457-460.

11.   Xiuzhi, T. and Xue, J. (2017). Preparing water-soluble 2,3-dialdehyde cellulose as a bio-origin cross-linker of chitosan. Cellulose, 25:987-998.

12.   Mahendra, I. P., Wirjosentono, B., Tamrin, I. H. and Mendez, J. A. (2019). Thermal and morphology properties of cellulose nanofiber from TEMPO-oxidized lower part of empty fruit bunches (LEFB). Open Chemistry, 17: 526-536.

13.   Sofla, M. R. K., Brown, R. J., Tsuzuki, T. and Rainey, T. J. (2016). A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(3):1-9.

14.   Horseman, T., Tajvidi, M., Diop, C. I. K. and Gardner, D. J. (2017). Preparation and property assessment of neat lignocellulose nanofibrils (LCNF) and their composite films. Cellulose, 24(6): 2455-2468.

15.   Marina, D. C. E. P., Demetrius, D. D. S., Ana, L. A. G., Victor, D. S. A. L., Allan, R. F., Moraes, R. F. D. N., Jairo, T. and Frederico, G. P. (2019). Film based on magnesium impregnated biochar/ cellulose acetate for phosphorus adsorption from aqueous solution. The Royal Society of Chemistry, 9: 5620-5627.

16.   Anuj, K., Yuvraj, S. N., Veena, C. and Nishi, K. B. (2014). Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1): 1-8.

17.   Lindh, J., Ruan, C., Stromme, M. and Mihranyan, A. (2016). Preparation of porous cellulose beads via introduction of diamine spacers. Langmuir, 32(22): 5600-5607.

18.   Julie, C. C. S., Neena, G. and Sunil, K. N. (2016). Isolation and characterization of cellulose nanofibrils from arecanut husk fiber. Carbohydrate Polymers, 142: 158-166.

19.   Ahmed, A. O. and Jong-Whan, R. (2016). Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: Effect of isolation method. Materials Letters, 168: 146-150.

20.   Juho, S., Henrikki, L., Jouko, N. and Osmo, H. (2011). Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydrate Polymers, 86: 260-265.

21.   Chao, L., Li, B., Du, H., Lv, D., Zhang, Y. and Yu, G. (2016). Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydrate polymers, 151:716-724.

22.   Lopez-Sanchez, P., Martinez-Sanz, M., Bonilla, M. R., Wang, D., Gilbert, E. P., Stokes, J. R. and Gidley, M. J. (2017). Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly. Carbohydrate Polymers, 162:71-81.

23.   David, J. M., Christine, B., Vikram, S. R., George, P. S. and Gil, G. (2019). One-shot TEMPO-periodate oxidation of native cellulose. Carbohydrate Polymers, 226: 1-10