Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 830 - 837
STUDY
ON THE OXIDATION AND PROPERTIES OF DIHYDROXYL CELLULOSE USING DIFFERENT AMOUNTS
OF SODIUM PERIODATE
(Kajian ke atas Pengoksidaan dan Pencirian bagi
Dihidroksil Selulosa Menggunakan Kuatiti Natrium Periodat yang Berbeza)
Nur
Nadia Dzulkifli*, Nur Wahibah Mohd Zaki, Ahmad Husaini Mohamed, Nor Monica
Ahmad, Sheikh
Ahmad Izaddin Sheikh Mohd Ghazali
School of Chemistry and
Environment, Faculty of Applied Sciences,
Universiti Teknologi MARA
Negeri Sembilan Branch, Kuala Pilah Campus,
Pekan Parit Tinggi 72000
Kuala Pilah, Negeri Sembilan
*Corresponding author: nurnadia@uitm.edu.my
Received: 23 July 2020;
Accepted: 23 September; Published: 10
December 2020
Abstract
Sodium periodate is as an oxidizing
agent that breaks the cellulose ring at the C2-C3 bond of the anhydroglucose
units (AGU) by creating two vicinal hydroxyl groups which have the potential to
form a Schiff base for further reactions. The objective of this study was to
evaluate the effects of different amounts of sodium periodate on the formation
and arrangement of hydroxyl groups at the C2-C3 bond of the anhydroglucose
units (AGU), which
is so-called dihydroxyl cellulose (DHC). Firstly, microcrystalline cellulose
(MCC) was sonicated to break down the intermolecular and intramolecular
interactions. Then, MCC was oxidized with 3 g and 5 g of sodium periodate to
prepare the DHC compounds. The DHC and MCC were characterized by FTIR-ATR,
FESEM, TGA, and XRD techniques. The numbers of hydroxyl group of DHC increased
with the addition of sodium periodate. Besides, the thermal stability and
crystallinity of DHC was found to be higher with the increasing amount of
sodium periodate. Lastly, the morphology of DHC was found to be smooth, needle-
(1:3) and leaf-like (1:5) structure as compared to the irregular forms of MCC.
Difference of thermal stability, crystallinity, and morphological structure of
DHC compounds concluded that different amounts of sodium periodate could modify
the physicochemical properties of MCC.
Keywords:
microcrystalline
cellulose, dihydroxyl cellulose, sodium periodate, oxidation
Abstrak
Sodium periodat adalah agen pengoksidaan yang membuka
gegelang selulosa di ikatan C2-C3 pada unit anhidroglukosa (AGU) dengan
mewujudkan dua kumpulan visinal hidroksi yang berpotensi untuk membentuk Bes
Schiff bagi tindak balas selanjutnya. Objektif kajian ini ialah untuk menilai
kesan perbezaan kuantiti natrium periodat ke atas pembentukan dan susunan
kumpulan hidroksil di ikatan C2-C3 pada unit anhidroglukosa (AGU), yang
dikenali sebagai dihidroksi selulosa (DHC). Pertamanya, mikrohablur selulosa
(MCC) telah disonikasi untuk memutuskan interaksi intermolekul dan
intramolekul, Kemudian, MCC dioksidakan dengan 3g dan 5g natrium periodat untuk
menyediakan sebatian DHC. DHC dan MCC dicirikan dengan teknik FTIR-ATR, FESEM,
TGA, dan XRD. Bilangan kumpulan hidroksil bagi DHC meningkat dengan penambahan
kuantiti natrium periodat. Disamping itu, kestabilan haba dan kehabluran DHC
dikenalpasti adalah tinggi dengan peningkatan kuantiti natrium periodat.
Terakhir, morfologi DHC dikenalpasti adalah licin, struktur yang menyerupai
jejarum (1:3) dan dedaun (1:5) berbanding dengan bentuk yang tidak teratur bagi
MCC. Perbezaan kestabilan haba,
kehabluran dan struktur morfologi sebatian DHC dapat disimpulkan bahawa
perbezaan kuantiti natrium periodat berupaya mengubah sifat fizik-kimia
MCC.
Kata kunci: mikrohablur selulosa, dihidroksi selulosa,
natrium periodat, pengoksidaan
References
1. Cunzhen, G., Zhihui, Z., Zhixin, X., Peilong, X.
and Yanzhi, Xia. (2019). Preparation of ion-exchanged TEMPO-oxidized celluloses
as flame retardant products. Molecules,
24:1-10.
2. Zuwu, T.,Wenyan, L., Xinxing, L.,
He, X., Qingxian, M., Liulian, H., Lihui, C. and Hui, W. (2017). TEMPO-oxidized
cellulose with high degree of oxidation. Polymers,
9(9): 421.
3. Lin, X., Ma, W., Wu, H., Huang,
L., Chen, L. and Takahara, A. (2017). Fabrication of cellulose based super
hydrophobic microspheres for the production of magnetically actuatable smart
liquid marbles. Journal of Bioresources
and Bioproducts, 2:110-115.
4. Weng, R., Chen, L., Lin, S.,
Zhang, H., Wu, H., Liu, K., Cao, S. and Huang, L. (2017). Preparation and characterization
of antibacterial cellulose/chitosan nanofiltration membranes. Polymers, 9(116):1-13.
5. Luo, C. C.,Wang, H. and Chen, Y.
(2015). Progress in modification of cellulose and application. Chemical Industry and Engineering Progress,
34(3):767-773.
6. Liu, P., Pang, B., Tian, L.,
Schafer, T., Gutmann, T., Liu, H., Volkert, C. A., Buntkowsky, G. and Zhang, K.
(2018). Efficient, self-terminating isolation of cellulose nanocrystals
through periodate oxidation in pickering emulsions. ChemSusChem, 11(20): 3581-3585.
7. Ruan, C. Q., Stromme, M. and
Lindh, J. (2018). Preparation of porous 2,3-dialdehyde cellulose beads
crosslinked with chitosan and their application in adsorption of Congo red dye.
Carbohydrate Polymers, 181:200-207.
8. Liming, Z., Huanhuan, G., Meng,
X., Jie, C. and Yujie, D. (2017). Physicochemical properties, antioxidant and
antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose, 24: 2287-2298.
9. Zaman, M., Xiao, H., Chibante, F. and Ni, Y.
(2012). Synthesis and characterization of cationically modified nanocrystalline
cellulose. Carbohydrate Polymers,
89:163-170.
10. Anjali,
T. (2012). Modification of carboxymethyl cellulose through oxidation Carbohydrate polymers, 87(1): 457-460.
11. Xiuzhi, T. and Xue, J. (2017). Preparing water-soluble
2,3-dialdehyde cellulose as a bio-origin cross-linker of chitosan. Cellulose, 25:987-998.
12. Mahendra, I. P., Wirjosentono, B., Tamrin, I. H.
and Mendez, J. A. (2019). Thermal and morphology properties of cellulose
nanofiber from TEMPO-oxidized lower part of empty fruit bunches (LEFB). Open Chemistry, 17: 526-536.
13. Sofla, M. R. K., Brown, R. J., Tsuzuki, T. and
Rainey, T. J. (2016). A comparison of cellulose nanocrystals and cellulose
nanofibres extracted from bagasse using acid and ball milling methods. Advances in Natural Sciences: Nanoscience
and Nanotechnology, 7(3):1-9.
14. Horseman, T., Tajvidi, M., Diop, C. I. K. and
Gardner, D. J. (2017). Preparation and property assessment of neat lignocellulose
nanofibrils (LCNF) and their composite films. Cellulose, 24(6): 2455-2468.
15. Marina,
D. C. E. P., Demetrius, D. D. S., Ana, L. A. G., Victor, D. S. A. L., Allan, R.
F., Moraes, R. F. D. N., Jairo, T. and Frederico, G. P. (2019). Film based on
magnesium impregnated biochar/ cellulose acetate for phosphorus adsorption from
aqueous solution. The Royal Society of
Chemistry, 9: 5620-5627.
16. Anuj, K., Yuvraj, S. N., Veena, C. and Nishi, K.
B. (2014). Characterization of cellulose nanocrystals produced by
acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1): 1-8.
17. Lindh, J., Ruan, C., Stromme, M.
and Mihranyan, A. (2016). Preparation of porous cellulose beads via
introduction of diamine spacers. Langmuir,
32(22): 5600-5607.
18. Julie, C. C. S., Neena, G. and
Sunil, K. N. (2016). Isolation and characterization of cellulose nanofibrils
from arecanut husk fiber. Carbohydrate
Polymers, 142: 158-166.
19. Ahmed, A. O. and Jong-Whan, R.
(2016). Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: Effect
of isolation method. Materials Letters, 168:
146-150.
20. Juho, S., Henrikki, L., Jouko, N.
and Osmo, H. (2011). Dialdehyde cellulose microfibers generated from wood pulp
by milling-induced periodate oxidation. Carbohydrate
Polymers, 86: 260-265.
21. Chao,
L., Li, B., Du, H., Lv, D., Zhang, Y. and Yu, G. (2016). Properties of
nanocellulose isolated from corncob residue using sulfuric acid, formic acid,
oxidative and mechanical methods. Carbohydrate
polymers, 151:716-724.
22. Lopez-Sanchez, P., Martinez-Sanz, M., Bonilla,
M. R., Wang, D., Gilbert, E. P., Stokes, J. R. and Gidley, M. J. (2017).
Cellulose-pectin composite hydrogels: Intermolecular interactions and material
properties depend on order of assembly. Carbohydrate
Polymers, 162:71-81.
23. David, J. M., Christine, B., Vikram, S. R.,
George, P. S. and Gil, G. (2019). One-shot TEMPO-periodate oxidation of native
cellulose. Carbohydrate Polymers, 226:
1-10