Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 1035 - 1044

 

 

 

 

FLAVONOIDS WITH MONOAMINE OXIDASE A AND B INHIBITORY AND ANTI-INFLAMMATORY EFFECTS FROM Vitex grandifolia

 

(Flavonoid Bersama Perencat Moniamin Oksidase A dan B dan Kesan Anti-Radang dari Vitex grandifolia)

 

Tijjani Ali*, Bello Oluwasesan Michael, Abiodun B. Ogbesejana

 

Department of Applied Chemistry,

Federal University Dutsin-Ma, Katsina State, Nigeria

 

*Corresponding author:  tali@fudutsinma.edu.ng

 

 

Received: 18 July 2019; Accepted: 20 July 2020; Published:  10 December 2020

 

 

Abstract

Vitex grandifolia is a plant that belongs to the Lamiaceae or Labiatae family. It is classified as an underutilised vegetable with little known phytochemistry. Methanol fraction of the leaves of the plant afforded the isolation of three known flavonoids: isoorientin (1), orientin (2), and isovitexin (3). Spectroscopic techniques, namely NMR and IR and comparison with data in the literature were used to assess the structures of the isolated compounds. The molecules isolated were tested in vitro for monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) human recombinant, and anti-inflammatory activities. Mostly, the isolated compounds showed selective activity towards MAO-B. Inhibition of MAO-B by isoorietin (1) and orietin (2) was 9-fold more potent (IC50 [μg/mL] of 11.08 and 11.04) compared to the inhibition of MAO-A (IC50 [μg/mL] of ˃100), while clorgyline and deprenyl were used as the positive standards. All flavonoids isolated from the plant displayed good activity against NF-Kb with IC50 (μg/mL) of 8.9, 12, and 18. The study shows a strong relationship between the structures of the flavonoids isolated with its biological activities based on the different patterns of substitution, particularly in C2=C3 bond and the positions of glucose in the isolates. Furthermore, the study is the first of its kind to determine the phytochemistry of the polar fraction of V. grandifolia, its anti-inflammatory, and neurodegenerative protective roles.

 

Keywords:  Vitex grandifolia, underutilised vegetable, flavonoids, MAO-A and B, neurodegenerative

 

Abstrak

Vitex grandifolia ialah sejenis tumbuhan yang tergolong dalam keluarga Lamiaceae or Labiatae. Ia diklasifikasikan sebagai sayur-sayuran yang kurang digunakan dengan sedikit maklumat fitokimia. Pecahan metanol daun tumbuhan ini dapat memencilkan tiga jenis flavonoid: isoorientin (1), orientin (2), dan isovitexin (3). Teknik spektroskopi iaitu NMR dan IR dan perbandingan dengan data dari kajian literatur digunakan untuk menilai struktur sebatian yang dipencilkan. Molekul yang dipencilkan diuji secara in vitro terhadap rekombinan manusia monoamine oxidase A (MAO-A) dan monoamine oxidase B (MAO-B), dan aktiviti anti-radang. Sebatian yang dipencilkan kebanyakannya menunjukkan aktiviti memilih terhadap MAO-B. Perencatan MAO-B oleh isooretin (1) dan orietin (2) adalah 9 kali ganda lebih poten (IC50 [μg/mL] sebanyak 11.08 dan 11.04) berbanding perencatan terhadap MAO-A (IC50 [μg/mL] > 100), dengan menggunakan clorgyline dan deprenyl sebagai piawaian positif. Semua flavonoid yang dipencilkan daripada tumbuhan menunjukkan aktiviti yang baik terhadap NF-Kb with IC50 (μg/mL) sebanyak 8.9, 12, dan 18. Kajian ini menunjukkan hubungan yang kuat antara struktur flavonoid yang dipencilkan dengan aktiviti biologi berdasarkan pelbagai corak penggantian, terutamanya pada ikatan C2=C3 bond dan kedudukan glukosa dalam pencilan tersebut. Tambahan pula, kajian ini merupakan kajian pertama seumpamanya yang menentukan fitokimia pecahan berkutub V. grandifolia, berserta fungsi anti-radang dan perlindungan rosotan neuro.

 

Kata kunci:  Vitex grandifolia, sayur-sayuran yang kurang digunakan, flavonoids, MAO-A dan B, rosotan neuro

 

References

1.      Ames B. N., Shigenaga, M. K. and Hagen, T. M. (1993). Oxidants, antioxidants and degenerative diseases of aging. Proceeding National Academy Science, 90: 7915-7922.

2.      Shih, J. C., Chen, K. and Ridd, M. J. (1999). Monoamine oxidase: From genes to behaviour. Annual Review Neuroscience, 22:197-217.

3.      Salah, N., Miller, N. J., Paganga, G., Tijburg, L., Bolwell, G. P. and Rice-Evans, C. (1995). Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain breaking antioxidants. Archives of Biochemistry and Biophysics, 322: 339-346.

4.      Yuh-Hwa, L., Wen-Chun, W., Yeh-Lin, L., Ying-Jang, L. and Wen-Chi, H. (2010). Antioxidant and amine oxidase inhibitory activities of Hydroxyurea. Bioscience, Biotechnology, and Biochemistry, 74(6):1256-1260.

5.      Silverman, R. B., Ding, C.Z. and Gates, K. S. (1993). Design and meachanism of monoamine oxidase inactivators from an organic chemical perspective. In: Testa, B., Kyburz, E., Fuhrer, W., Giger, R. (Eds.), Perspectives in Medicinal Chemistry. Verlag Helvetica ChomicaActa. Basel, Weinheim, New York: pp. 73-86.

6.      Kumazawa, T., Minatogawa., Matsuba, S. and Sato, J. I. (2000). An effective synthesis of isoorientin: the regioselective synthesis of a 6-C-glucosylflavone. Carbohydrate Research, 329: 507.

7.      Abell, C.W. and Kwan, S.W. (2009). Molecular characterization of monoamine oxidase A and B. Progress in Nucleic Acid Research and Molecular Biology, 65:129-156.

8.      Vina, J., Sastre, J., Pallardo, F. and Borras, C. (2003). Mitochondrial theory of aging: Importance to explain why females live longer than males. Antioxidant and Redox Signalling, 5: 549-556.

9.      Bratkov V. M., Shkondrov A. M., Zdraveva P. K. and Krasteva, I. N. (2016). Flavonoids from the genus Astragalus: Phytochemistry and biological activity. Pharmacognosy Review, 10: 11-32.

10.   Yadav P. and Malpathak N. (2016). Estimation of antioxidant activity and total phenol, flavonoid content among natural populations of caper (Capparismoonii, Wight) from Western Ghats region. Indian Journal of Pharmaceutical Education Research, 50: 495-501.

11.   Oliveira F. G., de Lima-Saraiva S. R., Oliveira A. P., Rabêlo S. V., Rolim L. A. and Almeida, J. R. (2016). Influence of the extractive method on the recovery of phenolic compounds in different parts of Hymenaeamartiana Hayne. Pharmacognosy Research, 8:270-275.

12.   El-gizawy H. A. and Hussein, M. A. (2017). Isolation, structure elucidation of ferulic and coumaric acids from Fortunella japonicas wingle leaves and their structure antioxidant activity relationship. Free Radical Antioxidant. 7: 23-30.

13.   Venkatesan, A., Kathirvel, A., Prakash, S. and Sujatha, V. (2017). Antioxidant, antibacterial activities and identification of bioactive compounds from Terminalia chebula bark extracts. Free Radical Antioxidant, 7: 43-49.

14.   Dutta, S. and Das, S. (2010). A study of the anti-inflammatory effect of the leaves of Psidiumguajava Linn. on experimental animal models. Pharmacognosy Research, 2: 313-317.

15.   Middleton E, Jr, Kandaswami, C. and Theoharides T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacology Review, 52: 673-751.

16.   Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology and Therapeutics, 96: 67-202.

17.   Fiala. E. S., Reddy, B. S.  and Weisburger, J. H. (1985). Naturally occurring anticarcinogenic substances in foodstuffs. Annual Review of Nutrition, 5:291-321.

18.   Tapsell, L.C., I. Hemphill, L., Cobiac, C. S. P. and Sullivan, D. R.  (2006). Health benefits of herbs and spices: The past, the present, the future. Medical Journal Australia, 185: S4-S24.

19.   Triggiani, V., Resta, F., Guastamacchia, E., Sabba, C., Licchelli, B., Ghiyasaldin, S. and Tafaro, E. (2006). Role of antioxidants, essential fatty acids, carnitine, vitamins, phytochemicals and trace elements in the treatment of diabetes mellitus and its chronic complications. Drug Targets, 6: 77-93.

20.   Epidi, T.T. and Odili, E.O. (2009). Biocidal activity of selected plant powders against T. castaneum (Herbst).in stored groundnut (Arachishypogaea L.). African Journal Environment Science Technology, 3: 1-5.

21.   Burkill, H. M. (1995). The useful plants of West Tropical Africa. 2nd edition. Families J-L. Royal Botanic Gardens, 3: pp. 857.

22.   Samoylenko, V., Rahman, M. M., Tekwani, B. L., Tripathi, L. M., Wang, Y. H., Khan, S. I., Khan, I. A., and Muhammad, I. (2010). Banisteriopsiscaapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson’s disease. Journal of Ethnopharmacology, 127: 357-369.

23.   Narayan D. Chaurasiya, Mohamed A. Ibrahim, Ilias Muhammad, Larry, A. W. and Babu, L.T. (2014). Monoamine oxidase inhibitory constituents of propolis: kinetics and mechanism of inhibition of recombinant human MAO-A and MAO-B. Molecules, 19: 18936-18952.

24.   Bankova, V., Popova, M. and Trusheva, B. (2014). Propolis volatile compounds: Chemical diversity and biological activity: A review. Chemistry Central Journal, 8: 28.

25.   Quang, D. N., Harinantenaina, L., Nishizawa, T., Hashimoto, T., Kohchi, C., Soma, G. and Asakawa, Y. (2006). Inhibition of nitric oxide production in RAW 264.7 cells by azaphilones from Xylariaceous fungi. Biology Pharmaceutical Bulletin, 29: 34-37.

26.   Zhao, J., Khan, S. I. and Wang, M. (2014). Octulosonic acid derivatives from Roman chamomile (Chamaemelumnobile) with activities against inflammation and metabolic disorder. Journal Natural Production, 77: 509-515.

27.   Al-Taweel, A. M., El-Shafae, A. M., Perveen, S., Fawzy, G. A. and Khan, S. I. (2015). Anti-inflammatory and cytotoxic constituents of Bauhinia retusa. International Journal of Pharmaceutical, 11:372-376.

28.   Li, Y., Ma, S., Yang, Y., Ye. S. and But, P. P. (2002). Antiviral activity of flavonoids and organic acid from Trollius chinensis Bunge. Journal of Ethnopharmacology, 79(3): 365-368.

29.   Song, D. M. and Sun, Q. S. (2004). Chemical studies on constituents of Trollius altaicus CA Mey. Medical Chemistry,14: 233-235.

30.   Ju, Y., J. N. and Sacalis, C. C. S. (1998). Bioactive flavonoids from endophyte-infected blue grass (Poaampla). Journal of Agriculture Food Chemistry, 46: 3785.

31.   Cheng, G., Bai, Y., Zhao, Y., Tao, J., Liu, Y., Tu, G., Ma, L., Liao, N. and Xu, X. (2000). Flavonoids from Ziziphusjujuba Mill var. spinose. Tetrahedron, 56: 8915.

32.   Wang, T., Li, Q. and Bi, K. (2018). Bioactive flavonoids in medicinal plants: Structure activity and biological fate. Asian Journal of Pharmaceutical Sciences, 13(1): 12-23.

33.   Celik, H. and Kosar, M. (2012). Inhibitory effects of dietary flavonoids on purified hepatic NADH-cytochrome b5 reductase: structure-activity relationships. Chemico-Biological Interaction, 197(2–3): 103- 109.

34.   Isoda H, Motojima H, Onaga S, Samet I, Villareal, M. O. and Han, J. (2014). Analysis of the erythroid differentiation effect of 574 flavonoid apigenin on K562 human chronic leukemia cells. Chemico-Biological Interactions, 575: 269-277.

35.   Spencer, J. P., Vafeiadou K., Williams, R. J. and Vauzour, D.   (2012). Neuroinflammation: modulation by 635 flavonoids and mechanisms of action. Molecular Aspects of Medicine, 33(1): 83-97.

36.   Xin, Z., Jinyong, P., Guorong, F. and Yutian, W. (2015). Isolation and purification of flavonoid glycosides from Trolliusledebouri using high-speed counter-current chromatography by stepwise increasing the flow-rate of the mobile phase. Journal of Chromatography A, 1092: 216-221.

37.   Sharma, K. K., Sharma, A. K., Sharma M. C. and Tanwar K. (2014). Isolation of orientin (51) and vitexin from stem bark of parkinsoniaaculeata (caesalpiniaceae) and their successive blending on sheep wool fiber. International Journal of Pharmaceutical and Phytochemical Research, 6(3): 557-561.

38.   Jinfeng, Y. A., Yong, S. K. B. and Myong Jo, K. (2015). Isolation and characterization of bioactive compounds from Lepisorus thunbergianus (Kaulf.) Arabian Journal of Chemistry, 8: 407-413.

39.   Peng, J., Fan, G., Hong, Z., Chai, Y. and Wu, Y. (2005). Preparative separation of isovitexin and isoorientin from PatriniavillosaJuss by high-speed counter-current chromatography. Journal of Chromatography A, 1074: 111-115.

40.   Endo Y, Hayashi,H, Sato T, Maruno M, Ohta, T. and Nozoe, S. (1994). Confluentic acid and 2′-O-methylperlatolic acid, monoamine oxidase B inhibitors in a Brazilian plant, Himatanthussucuuba. Chemical Pharmaceutical Bulletin, 42: 1198-1201.

41.   Lin R. D., Hou W. C., K.Y. Yen, and Lee, M. H. (2003). Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines. Phytomedicine, 10: 650-656.

42.   Zarmouh, O. N., Mazzio, A. E., Elshami, M. F., Messaha, S. S., Eyunmi, V. K. S. and Soliman, F. A. K. (2015). Evaluation of inhibitory effects of bavachinin and bavachin on human monoamine oxidases A and B. Evidence-Based Complementary and Alternative Medicine, 2015: 14.

43.   Lee, M., Lin, R., Shen, L., Yang, L., Yen, K. and Hou, W. (2001). Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. Journal Agriculture Food Chemistry, 49(11): 5551-5555.

44.   Ficarra, R., Ficarra, P., Tommasini, S., Carulli, M., Melardi, S., Di Bella, M. R., Calabro, M. L. and Casuscelli, F. (1997). Isolation and characterization of Guierasenegalensis J. F. Gmel. active principles. Bollettino Chimico Farmaceutico, 136: 454-459.