Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 1024 - 1034

 

 

 

 

INDUCTION AND IDENTIFICATION OF BIOACTIVE COMPOUNDS FROM CALLUS EXTRACT OF Piper betle L. var. Nigra

 

(Induksi Dan Pengenalpastian Sebatian Bioaktif dari Ekstrak Kalus Piper betle L. var. Nigra)

 

Junairiah1*, Rizka Kusuma Rahmawati1, Yosephine Sri Wulan Manuhara1, Ni’matuzahroh1, Manikya Pramudya1, Lilis Sulistyorini2

 

1Department of Biology, Faculty of Science and Technology

2Faculty of Public Health

Universitas Airlangga, Kampus C - Mulyorejo, Surabaya 60115, Indonesia

 

*Corresponding author:  alip.jun1@gmail.com

 

 

Received: 18 July 2019; Accepted: 20 July 2020; Published:  10 December 2020

 

 

Abstract

Black betel (Piper betle L. var. Nigra) has been shown to have the potential for medicinal use. The black betel leaves contain 4.2% essential oil, alkaloids, flavonoids, saponins, tannins, eugenol, and chavicol. The application of plant tissue culture is needed to increase the production of secondary metabolites. This study aimed to investigate the impact of the combination of growth regulators (IBA, BAP, and kinetin) on the bioactive compounds of black betel callus extract. The experimental parts consisted of four treatments: I2B2, I1.5B1.5, I2K1.5, I1K1.5, and a control group. Callus induction time, fresh weight, dry weight, morphology, and bioactive compounds of black betel callus extract were observed. The findings showed that the combination of IBA and BAP, and IBA and kinetin influenced the growth of black betel leaves explants. The best concentration of growth regulators was the combination of 2 mg/L IBA and 2 mg/L BAP, which give the results of 9.33 days callus induction time, 650.68 mg fresh weight, and 54.22 mg dry weight. The grown callus had white to light brown colour with a compact texture. Furthermore, different treatments resulted in different bioactive compounds contained in the black betel leaves callus extract. Supplementation of I2B2 resulted in an extract containing 15 compounds, I1.5B1.5 supplementation yielded 8 compounds, I2K1.5 12 compounds, and I1K1.5 13 compounds. The bioactive compounds were predominated by methyl-β-D-Glucopyranoside (28.69%), 9,12-octadecadienoic acid (Z, Z; 15.07%), and hexadecanoic acid (11.03%).

 

Keywords:  callus induction, bioactive compounds, Piper betle L. var. Nigra, IBA, BAP, kinetin

 

Abstrak

Sirih hitam (Piper betle L. var Nigra) telah terbukti berpotensi dalam kegunaan perubatan. Daun sirih hitam mengandungi 4.2% minyak pati, alkaloid, flavonoid, saponin, tanin, eugenol, dan chavikol yang penting. Penggunaan kultur tisu tumbuhan diperlukan untuk meningkatkan pengeluaran metabolit sekunder. Tujuan kajian ini adalah untuk mengkaji kesan gabungan pengawal atur tumbesaran (IBA, BAP, dan kinetin) pada sebatian bioaktif ekstrak kalus sirih hitam. Bahagian eksperimen terdiri daripada empat rawatan: I2B2, I1.5B1.5, I2K1.5, I1K1.5 dan kumpulan kawalan. Masa induksi kalus, berat segar, berat kering, morfologi, dan sebatian bioaktif ekstrak kalus sirih hitam telah diperhatikan. Hasil kajian menunjukkan bahawa gabungan IBA dan BAP, dan IBA dan kinetin mempengaruhi pertumbuhan eksplan daun sirih hitam. Kepekatan pengawal atur tumbesaran terbaik ialah gabungan 2 mg/L IBA dan 2 mg/L BAP yang memberikan hasil masa induksi kalus selama 9.33 hari, berat segar 650.68 mg, dan 54.22 mg berat kering. Kalus yang tumbuh mempunyai warna putih hingga coklat muda dengan tekstur yang padat. Selanjutnya, rawatan yang berbeza menghasilkan sebatian bioaktif berbeza yang terkandung dalam ekstrak kalus daun sirih hitam. Tambahan I2B2 menghasilkan ekstrak yang mengandungi 15 sebatian, tambahan I1.5B1.5 menghasilkan 8 sebatian, I2K1.5 12 sebatian, dan I1K1.5 13 sebatian. Sebatian bioaktif didominasi oleh metil-β-D-glukopiranosida (28.69%), asid 9,12-oktadekanoic (Z, Z; 15.07%), dan asid heksadekanoik (11.03%).

 

Kata kunci:  induksi kalus, sebatian bioaktif, Piper betle L. var. Nigra, IBA, BAP, kinetin

 

References

1.      Das, S., Parida, R., Sandeep, I. S., Nayak, S. and Mohanty, S. (2016). Biotechnological intervention in betelvine (Piper betle L.): A review on recent advances and future prospects. Asian Pacific Journal of Tropical Medicine9(10): 938-946.

2.      Khomsatun, Wahyudi, Hari R. I. W., and Gustomo Y. (2019). Effectiveness of betel leaves extract (Piper betle, Linn) as mosquito Anopheles spp repellent. International Journal of Innovative Research in Science, Engineering and Technology, 8(5): 5144-5152.

3.      Alighiri, D., Cahyono, E., Eden, W. T., Kusuma, E. and Supardi, K. I. (2018). Study on the improvement of essential oil quality and its repellent activity of betel leaves oil (Piper betle L.) from Indonesia. Oriental Journal of Chemistry, 34 (6): 2913 - 2926.

4.      Sugumaran, M., Poornima, M., Venkatraman, S., Lakshmi, M., and Srinivasansethuvani (2011). Chemical composition and antimicrobial activity of sirugamani variety of Piper betle Linn leaf oil. Journal of Pharmacy Research, 4(10): 3424-3426.

5.      Hermawan, A. (2007). Pengaruh ekstrak daun sirih (Piper betle L.) terhadap pertumbuhan Staphylococcus aureus dan Escherichia coli dengan metode difusi disk. Thesis of Undergraduate Degree. Universitas Airlangga.

6.      Utomo, B. (2015). Pengaruh kombinasi zat pengatur tumbuh Napthalene Acetic Acid (NAA) dan kinetin terhadap pembentukan dan kandungan metabolit sekunder kalus sirih merah (Piper crocatum Ruiz dan Pav.). Thesis of Undergraduate Degree. Universitas Airlangga.

7.      Overvoorde, P., Fukaki, H. and Beeckman, T. (2010). Auxin control of root development. Cold Spring Harbor Perspectives in Biology, 2(6): a001537.

8.      Saad, A. I. M. and Elshahed, A. M. (2012). Plant tissue culture media. In Recent Advances in Plant in vitro Culture. IntechOpen: pp. 29-40.

9.      Ikeuchi, M., Sugimoto, K. and Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. The Plant Cell, 25 (9): 3159-3173.

10.   Fatin, U. (2016). Induksi kalus eksplan daun sirih hitam (Piper betle L.) dengan kombinasi konsentrasi zat pengatur tumbuh indol butyric acid (IBA) dan kinetin. Thesis of Undergraduate Degree. Universitas Airlangga.

11.   Rachmah, A. (2016). Induksi kalus eksplan daun sirih hitam (Piper betle L.) dengan kombinasi konsentrsi zat pengatur tumbuh indol butyric acid (IBA) dan 6-Benzylaminopurine (BAP). Thesis of Undergraduate Degree. Universitas Airlangga.

12.   Tantri, N. A. (2015). Pengaruh variasi konsentrasi zat pengatur tumbuh Indol Butyric Acid (IBA) dan Benzylaminopurine (BAP) terhadap induksi kalus dan kandungan senyawa sirih merah (Piper crocatum Ruiz dan Pav.). Thesis of Undergraduate Degree. Universitas Airlangga.

13.   Junairiah, J., Zuraidassanaaz, N. I., Izdihar, F. N. and Manuhara, Y. S. W. (2017). Callus induction of leaf explant Piper betle L. var Nigra with Combination of Plant Growth Regulators Indole-3-acetic Acid (IAA), Benzyl Amino Purine (BAP) and Kinetin. AIP Conference Proceedings, 1888: 020028.

14.   Junairiah, J., Ni’matuzahroh, N., Zuraidassanaaz, N. I., and Sulistyorini, L. (2018). Isolation and identification of secondary metabolites of black betel (Piper Betle L. var. Nigra). Jurnal Kimia Riset, 3(2): 131-138.

15.   Wahyuni, D. K., Ansori, A. N. M. and Vidiyanti, F. (2017). GC-MS Analysis of phytocomponents in methanolic extracts of leaf-derived callus of Justicia gendarussa Burm. f. Bioscience Research. 14(3): 668-677.

16.   Wahyuningtyas, L., Resmiari, R. S. and Nashichuddin, A. (2014). Induksi kalus akasia (Acacia mangium) dengan penambahan kombinasi 2,4-D dan BAP pada media MS. https://etheses.uinmalang.ac.id/ 376/12/10620033%20Rangkuman.pdf. [Access online 26 December 2018].

17.   Widyarso, M. (2010). Kajian penggunaan IBA dan BAP untuk merangsang pembentukan tunas lengkeng (Dimocarpus longan Lour.) varietas pingpong secara In Vitro. Thesis of Undergraduate Degree. Universitas Sebelas Maret.

18.   Rohmatin, N. (2014). Induksi kalus dari eksplan daun gandarusa (Justicia Gendarussa Burm. F.) dengan pemberian kombinasi zat pengatur tumbuh 2,4-D, IBA, dan kinetin. Thesis of Undergraduate Degree. Universitas Airlangga.

19.   Muryanti, S., and Anggarwulan, E. (2005). Pertumbuhan dan produksi reserpin kalus pule pandak (Rauvolia serpentine (L.) Bentham ex. Kurz) pada pemberian metil jasmonat secara In Vitro. Bioteknologi, 2(2): 58-64.

20.   Fehér, A. (2019). Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology?. Frontiers in Plant Science, 10: 536.

21.   Ikeuchi, M., Sugimoto, K., and Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. The Plant Cell25(9): 3159-3173.

22.   Junairiah, Nurhariyati, T., Ni’matuzahroh and Sulistyorini, L. (2018). GC-MS analysis of bioactive compounds in n-hexane, ethyl acetate and methanol extract of Piper betle L. Var. Nigra. Bioscience Research, 15(3): 1472-1479.

23.   Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C. and Haridas, M. (2012). Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chemical Biology & Drug Design, 80 (3): 434-439.

24.   Diyabalanage, T., Mulabagal, V., Mills, G., DeWitt, D. L. and Nair, M. G. (2008). Health-beneficial qualities of the edible mushroom, Agrocybe aegerita. Food Chemistry, 108(1): 97-102.

25.   Aubert, S., Choler, P., Pratt, J., Douzet, R., Gout, E. and Bligniy, R. (2004). Methyl-b-D-glucopyranoside in higher plants: Accumulation and intracellular localization in Geum montanum L. leaves and in model systems studied by 13C nuclear magnetic resonance. Journal of Experimantal Botany, 55(406): 2179- 2189.

26.   Isnawati, A. and Rooslamiati, I. (2013). Penetapan kadar artemisinin dalam ekstrak heksan tanaman Artemisia annua L. menggunakan metode densitometri. Media Litbangkes, 23(1): 15-22.

27.   Hasugian, A. R. and Tjitra, E. (2014). Artesunat-amodiakuin dan klorokuin untuk pengobatan malaria vivaks di Puskesmas Kopeta, Maumere, Nusa Tenggara Timur, 2007. Media Penelitian dan Pengembangan Kesehatan, 24(4): 161 - 168.

28.   Muti’ah, R. (2012). Penyakit malaria dan mekanisme obat-obat antimalaria. Alchemy, 2(1): 80-91.

29.   Kumar, S. and Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013: 1-16.

30.   Szopa, A., Kubica, P., Snoch, A. and Ekiert, H. (2018). High production of bioactive depsides in shoot and callus cultures of Aronia arbutifolia and Aronia × prunifolia. Acta Physiologiae Plantarum. 40(48): 1-11.

31.   Urban, S., Hickford, S. J. H., Blunt, J. W. and Munro, M. H. G. (2000). Bioactive marine alkaloids. Current Organic Chemistry, 4(7): 765-807.