Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 1013 - 1023
CELLULOSE ACETATE-TiO2 PHOTOCATALYTIC HOLLOW FIBRE MEMBRANE
FOR DEGRADATION OF METHYLENE BLUE
(Membran
Fiber Berongga Fotomangkin Selulosa Asetat-TiO2 bagi Degradasi
Metilena Biru)
Siti Wafiroh*, Miriam
R. Prananda, Linda Yuliana, Pratiwi Pudjiastuti,
Abdulloh
Department of Chemistry, Faculty of Science and
Technology,
Airlangga University, Surabaya, Indonesia
*Corresponding
author: sitiwafiroh@fst.unair.ac.id
Received: 18 July 2019;
Accepted: 20 July 2020; Published: 10
December 2020
Abstract
Methylene blue (MB)
used in the textile industry can cause environmental damage. Photocatalytic
hollow fibre membrane (PHFM) was employed in the degradation of synthetic MB
dye. This research aimed to determine the optimum concentration of TiO2
addition on the characteristic and performance of cellulose acetate-TiO2
PHFM for the degradation of synthetic MB dye. Hollow fibre membrane was
prepared from the phase inversion method using a dope solution with the ratio
of CA, formamide, and acetone of 22%:27%:51%, and TiO2 was then
added with various concentrations of 0.10%, 0.15%, 0.20%, 0.25%, and 0.30%
(w/w). The results showed that the optimum concentration of TiO2
addition to the hollow fibre membrane was 0.25% (w/w). The characterisation of
PHFM involved strain, stress, Young’s modulus, flux, rejection, SEM, FTIR, and
efficiency degradation for MB, while the characterisation of CA-TiO2
PHFM involved thickness, stress, strain and Young’s Modulus, i.e., 0.15 mm, 5.5
× 102 kN/mm2, 0.13, and 4.2 × 103 kN/mm2,
respectively. The flux and rejection performance of PHFM with MB feed were
25.66 L/m2.h and 94.8%, respectively. The total efficiency of CA-TiO2
PHFM application for MB degradation was 98.9%, and waste textile dye was 82.6%.
PHFM was capable of degrading the synthetic MB.
Keywords: photocatalytic, hollow
fibre membrane, cellulose acetate, TiO2, methylene blue
Abstrak
Metilena biru (MB) yang
digunakan dalam industri tekstil boleh menyebabkan kerosakan alam sekitar.
Membran fiber berongga fotomangkin (PHFM) digunakan dalam pemerosotan pewarna
MB sintetik. Kajian ini bertujuan untuk menentukan kepekatan optimum penambahan
TiO2 terhadap ciri dan prestasi PHFM selulosa asetat–TiO2
untuk pemerosotan pewarna MB sintetik. Membran fiber berongga dihasilkan
melalui kaedah songsangan fasa menggunakan larutan dop dengan nisbah CA,
formamida, dan aseton pada 22%:27%:51%, dan TiO2 kemudiannya
ditambah pada pelbagai kepekatan sebanyak 0.10%, 0.15%, 0.20%, 0.25%, dan 0.30%
(w/w). Keputusan menunjukkan kepekatan optimum penambahan TiO2
kepada membran gentian geronggang pada 0.25% (w/w). Pencirian PHFM melibatkan
terikan, tegasan, modulus Young, fluks, penyingkiran, SEM, FTIR, dan kecekapan
pemerosotan MB, manakala pencirian CA-TiO2 PHFM melibatkan
ketebalan, tegasan, terikan, dan modulus Young, masing-masing pada 0.15 mm, 5.5
× 102 kN/mm2, 0.13, and 4.2 × 103 kN/mm2.
Prestasi fluks dan penyingkiran PHFM dengan suapan MB masing-masing ialah 25.66
L/m2.h and 94.8%. Kecekapan aplikasi CA–TiO2 PHFM bagi
pemerosotan MB ialah 98.9%, dan sisa pewarna tekstil ialah 82.6%. PHFM mampu
degradasi MB sintetik.
Kata kunci: fotomangkin, membrane
fiber berongga, selulosa asetat, TiO2, metilena biru
References
1.
Mondal, M. and De, S.
(2016). Treatment of textile plant effluent by hollow fibre nanofiltration
membrane and multi-component steady state modeling. Chemical Engineering
Journal, 285: 304-318.
2.
You, L., Ai, L. and
Jiang. J. (2011). Removal of methylene blue from aqueous by
montmorillonite/CoFe2O4 composite with magnetic
separation performance. Desalination, 266: 72-77.
3.
Chin, S., Park, E., Kim,
M. and Jurng, J. (2010). Photocatalytic degradation of methylene blue with TiO2
nanoparticles prepared by a thermal decomposition process. Powder
Technology, 201: 171-176.
4.
Dariani, R. S., Esmaeili,
A., Mortezaali, A. and Dehghanpour, S. (2016). Photocatalytic reaction and
degradation of methylene blue on TiO2 nano-sized particles. Optik,
127:7143-7154
5.
Nosaka, Y. and Zhang, Y.
(2014). Mechanism of the OH radical generation in photocatalysis with TiO2
of different crystalline types. Journal
of Physical Chemistry, 118:10824-10832.
6.
Erjavec, B., Grcic, I.,
Vrsaljko, D., Guyon, C. and Tatoulian, M. (2017). Influence of plasma surface
pretreatment and tryarylmethane dye on the photocatalytic performance of TiO2-chitosan
coating on textile. Progress in Organic Coatings, 105: 277-285.
7.
Rahman, Arifur, M., Amin,
Ruhul, S, M., Alam and Shafiqul, A. M. (2012).
Removal of methylene blue from waste water using activated carbon
prepared from rice husk. Dhaka University Journal of Science, 60(2):185-189.
8.
Jiangfeng, Y., Wang, K.,
Ren, M., Jefferson, Z, L. and Wang, H. (2012). Phase inversion spinning of
ultrafine hollow fibre membrane through a single orifice spinneret. Journal
of Membrane Science, 421: 8-14.
9.
Jayakumar, R.,
Ramachandran, R., Divyarani, V. V., Chennazhi, K. P., Tamura, H. and Nair, S.
V. (2011). Fabrication of chitin–chitosan/nano TiO2-composite
scaffolds for tissue engineering applications. International Journal of
Biological Macromolecules, 48(2): 336-344.
10.
Yang, X., Xiong, L., Hu,
X., He, B. and Chu. G., (2012). Photocatalytic reaction and degradation of
methylene blue on TiO2 films in vacuum, an X-ray spectroscopy
study. Research Chemistry
Intermediate, 38: 67-75.
11.
Cheng, Q., Yu, S., Huang,
C., Liu, J., Peng, X. and Liu, M. (2013). Cellulose acetate hollow fibre
nanofiltration membrane with improved perm selectivity prepared through
hydrolysis followed by carboxymethylation. Journal Membrane Science,
434: 44-54.
12.
Mozia, S., Darowna, D.,
Szymański, K., Grondzewska, S., Borchert, K., Wróbel, R. and Morawski, A.
W. (2014). Performance of two photocatalytic membrane reactors for treatment of
primary and secondary effluents. Catalysis Today, 236: 135-145.
13.
Sarasidis, V. C., Plakas,
K. V., Patsios, S. I. and Karabelas, A. J. (2014). Investigation of diclofenac
degradation in a continuous photo-catalytic membrane reactor. Influence of
operating parameters. Chemical Engineering Journal, 239: 299-311.
14.
Fan, Z., Xiao, C., Liu,
H., Huang, Q. and Zhao, J. (2015). Structure design and performance study on
braid-reinforced cellulose acetate hollow fiber membranes. Journal of
Membrane Science, 486: 248-256.
15.
Zhang, X., Wang, D. K.,
Lopez, D. R. S. and da Costa, J. C. D. (2014). Fabrication of nanostructured
TiO2 hollow fibre photocatalytic membrane and application for
wastewater treatment. Journal of Chemical Engineering, 236: 314-322.
16.
Svehla, G. (2000).
Textbook of macro and semimicro qualitative inorganic analysis, Wiley. New
York: pp: 108-114.
17.
Chen, S, C., Su, J., Fu,
F, J., Mi, B. and Chung, T. S. (2013). Gypsum (CaSO4.2H2O)
scaling on polybenzimidazole and cellulose acetate hollow fibre membranes under
forward osmosis. Membrane, 4: 354-374.
18.
Kopek, K, K., Ditczak S,
M. and Wessling, M. (2011). Chemistry in a spinneret on the interplay of
crosslink and phase inversion during spinning of novel hollow fibre
membranes. Journal of Membrane
Sciences, 18: 308-359.
19.
Baker, W. R. (2012).
Membrane technology and applications. 3rd edition, John Wiley &
Sons, New York, pp: 265-266.
20.
Dzinun, H., Othman, M. H.
D., Ismail, A, F., Puteh, M, H., Rahman, M, A. and Jaafar, J. (2015).
Photocatalytic degradation of nonyphenol by immobilized TiO2 in dual
layer hollow fibre membranes. Chemical
Engineering Journal, 269: 255-261.
21.
Dzinun, H., Othman, M. H.
D., Ismail, A. F., Puteh, M. H., Rahman, M. A. and Jaafar, J. (2014).
Morfological study of co-extruded dual-layer hollow fibre membranes
incorporated with different TiO2 loadings. Journal of Membrane
Science, 134: 62.
22.
Wessling, M., Culfaz, P.
Z. and Lammertink, R. G. H. (2011). Hollow fibre ultrafiltration membranes with
microstructured inner skin. Journal Membrane Science, 7:221-369.
23.
Fan, Z. W., Xiao, C. F.
and Huang, X. Y. (2015). Preparation and performance of homogeneous braid
reinforced cellulose acetate hollow fibre membranes. Cellulose, 22:
695-707.
24.
Su, J., Yang, Q., Teo, J.
F. and Chung, T. S. (2010). Cellulose acetate nanofiltration hollow fibre
membranes for forward osmosis processes. Journal Membrane Science, 355:
36-44.
25.
Yao, J., Wang, J., Ren,
M., Liu, J. Z. and Wang. H. (2012). Phase inversion spinning of ultrafine
hollow fibre membranes through a single orifice spinneret. Journal Membrane
Science, 421-422: 8-14.