Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 1013 - 1023

 

 

 

 

CELLULOSE ACETATE-TiO2 PHOTOCATALYTIC HOLLOW FIBRE MEMBRANE FOR DEGRADATION OF METHYLENE BLUE

 

(Membran Fiber Berongga Fotomangkin Selulosa Asetat-TiO2 bagi Degradasi Metilena Biru)

 

Siti Wafiroh*, Miriam R. Prananda, Linda Yuliana, Pratiwi Pudjiastuti, Abdulloh

 

Department of Chemistry, Faculty of Science and Technology,

Airlangga University, Surabaya, Indonesia

 

*Corresponding author:  sitiwafiroh@fst.unair.ac.id

 

 

Received: 18 July 2019; Accepted: 20 July 2020; Published:  10 December 2020

 

 

Abstract

Methylene blue (MB) used in the textile industry can cause environmental damage. Photocatalytic hollow fibre membrane (PHFM) was employed in the degradation of synthetic MB dye. This research aimed to determine the optimum concentration of TiO2 addition on the characteristic and performance of cellulose acetate-TiO2 PHFM for the degradation of synthetic MB dye. Hollow fibre membrane was prepared from the phase inversion method using a dope solution with the ratio of CA, formamide, and acetone of 22%:27%:51%, and TiO2 was then added with various concentrations of 0.10%, 0.15%, 0.20%, 0.25%, and 0.30% (w/w). The results showed that the optimum concentration of TiO2 addition to the hollow fibre membrane was 0.25% (w/w). The characterisation of PHFM involved strain, stress, Young’s modulus, flux, rejection, SEM, FTIR, and efficiency degradation for MB, while the characterisation of CA-TiO2 PHFM involved thickness, stress, strain and Young’s Modulus, i.e., 0.15 mm, 5.5 × 102 kN/mm2, 0.13, and 4.2 × 103 kN/mm2, respectively. The flux and rejection performance of PHFM with MB feed were 25.66 L/m2.h and 94.8%, respectively. The total efficiency of CA-TiO2 PHFM application for MB degradation was 98.9%, and waste textile dye was 82.6%. PHFM was capable of degrading the synthetic MB.

 

Keywords: photocatalytic, hollow fibre membrane, cellulose acetate, TiO2, methylene blue

 

Abstrak

Metilena biru (MB) yang digunakan dalam industri tekstil boleh menyebabkan kerosakan alam sekitar. Membran fiber berongga fotomangkin (PHFM) digunakan dalam pemerosotan pewarna MB sintetik. Kajian ini bertujuan untuk menentukan kepekatan optimum penambahan TiO2 terhadap ciri dan prestasi PHFM selulosa asetat–TiO2 untuk pemerosotan pewarna MB sintetik. Membran fiber berongga dihasilkan melalui kaedah songsangan fasa menggunakan larutan dop dengan nisbah CA, formamida, dan aseton pada 22%:27%:51%, dan TiO2 kemudiannya ditambah pada pelbagai kepekatan sebanyak 0.10%, 0.15%, 0.20%, 0.25%, dan 0.30% (w/w). Keputusan menunjukkan kepekatan optimum penambahan TiO2 kepada membran gentian geronggang pada 0.25% (w/w). Pencirian PHFM melibatkan terikan, tegasan, modulus Young, fluks, penyingkiran, SEM, FTIR, dan kecekapan pemerosotan MB, manakala pencirian CA-TiO2 PHFM melibatkan ketebalan, tegasan, terikan, dan modulus Young, masing-masing pada 0.15 mm, 5.5 × 102 kN/mm2, 0.13, and 4.2 × 103 kN/mm2. Prestasi fluks dan penyingkiran PHFM dengan suapan MB masing-masing ialah 25.66 L/m2.h and 94.8%. Kecekapan aplikasi CA–TiO2 PHFM bagi pemerosotan MB ialah 98.9%, dan sisa pewarna tekstil ialah 82.6%. PHFM mampu degradasi MB sintetik.

 

Kata kunci: fotomangkin, membrane fiber berongga, selulosa asetat, TiO2, metilena biru

 

References

1.      Mondal, M. and De, S. (2016). Treatment of textile plant effluent by hollow fibre nanofiltration membrane and multi-component steady state modeling. Chemical Engineering Journal, 285: 304-318.

2.      You, L., Ai, L. and Jiang. J. (2011). Removal of methylene blue from aqueous by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination, 266: 72-77.

3.      Chin, S., Park, E., Kim, M. and Jurng, J. (2010). Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process. Powder Technology, 201: 171-176.

4.      Dariani, R. S., Esmaeili, A., Mortezaali, A. and Dehghanpour, S. (2016). Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik, 127:7143-7154

5.      Nosaka, Y. and Zhang, Y. (2014). Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types.  Journal of Physical Chemistry, 118:10824-10832.

6.      Erjavec, B., Grcic, I., Vrsaljko, D., Guyon, C. and Tatoulian, M. (2017). Influence of plasma surface pretreatment and tryarylmethane dye on the photocatalytic performance of TiO2-chitosan coating on textile. Progress in Organic Coatings, 105: 277-285.

7.      Rahman, Arifur, M., Amin, Ruhul, S, M., Alam and Shafiqul, A. M. (2012).  Removal of methylene blue from waste water using activated carbon prepared from rice husk. Dhaka University Journal of Science, 60(2):185-189.

8.      Jiangfeng, Y., Wang, K., Ren, M., Jefferson, Z, L. and Wang, H. (2012). Phase inversion spinning of ultrafine hollow fibre membrane through a single orifice spinneret. Journal of Membrane Science, 421: 8-14.

9.    Jayakumar, R., Ramachandran, R., Divyarani, V. V., Chennazhi, K. P., Tamura, H. and Nair, S. V. (2011). Fabrication of chitin–chitosan/nano TiO2-composite scaffolds for tissue engineering applications. International Journal of Biological Macromolecules, 48(2): 336-344.

10.   Yang, X., Xiong, L., Hu, X., He, B. and Chu. G., (2012). Photocatalytic reaction and degradation of methylene blue on TiO2 films in vacuum, an X-ray spectroscopy study.  Research Chemistry Intermediate, 38: 67-75.

11.   Cheng, Q., Yu, S., Huang, C., Liu, J., Peng, X. and Liu, M. (2013). Cellulose acetate hollow fibre nanofiltration membrane with improved perm selectivity prepared through hydrolysis followed by carboxymethylation. Journal Membrane Science, 434: 44-54.

12.   Mozia, S., Darowna, D., Szymański, K., Grondzewska, S., Borchert, K., Wróbel, R. and Morawski, A. W. (2014). Performance of two photocatalytic membrane reactors for treatment of primary and secondary effluents. Catalysis Today, 236: 135-145.

13.   Sarasidis, V. C., Plakas, K. V., Patsios, S. I. and Karabelas, A. J. (2014). Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Influence of operating parameters. Chemical Engineering Journal, 239: 299-311.

14.   Fan, Z., Xiao, C., Liu, H., Huang, Q. and Zhao, J. (2015). Structure design and performance study on braid-reinforced cellulose acetate hollow fiber membranes. Journal of Membrane Science, 486: 248-256.

15.   Zhang, X., Wang, D. K., Lopez, D. R. S. and da Costa, J. C. D. (2014). Fabrication of nanostructured TiO2 hollow fibre photocatalytic membrane and application for wastewater treatment. Journal of Chemical Engineering, 236: 314-322.

16.   Svehla, G. (2000). Textbook of macro and semimicro qualitative inorganic analysis, Wiley. New York: pp: 108-114.

17.   Chen, S, C., Su, J., Fu, F, J., Mi, B. and Chung, T. S. (2013). Gypsum (CaSO4.2H2O) scaling on polybenzimidazole and cellulose acetate hollow fibre membranes under forward osmosis. Membrane, 4: 354-374.

18.   Kopek, K, K., Ditczak S, M. and Wessling, M. (2011). Chemistry in a spinneret on the interplay of crosslink and phase inversion during spinning of novel hollow fibre membranes.  Journal of Membrane Sciences, 18: 308-359.

19.   Baker, W. R. (2012). Membrane technology and applications. 3rd edition, John Wiley & Sons, New York, pp: 265-266.

20.   Dzinun, H., Othman, M. H. D., Ismail, A, F., Puteh, M, H., Rahman, M, A. and Jaafar, J. (2015). Photocatalytic degradation of nonyphenol by immobilized TiO2 in dual layer hollow fibre membranes.  Chemical Engineering Journal, 269: 255-261.

21.   Dzinun, H., Othman, M. H. D., Ismail, A. F., Puteh, M. H., Rahman, M. A. and Jaafar, J. (2014). Morfological study of co-extruded dual-layer hollow fibre membranes incorporated with different TiO2 loadings. Journal of Membrane Science, 134: 62.

22.   Wessling, M., Culfaz, P. Z. and Lammertink, R. G. H. (2011). Hollow fibre ultrafiltration membranes with microstructured inner skin. Journal Membrane Science, 7:221-369.

23.   Fan, Z. W., Xiao, C. F. and Huang, X. Y. (2015). Preparation and performance of homogeneous braid reinforced cellulose acetate hollow fibre membranes. Cellulose, 22: 695-707.

24.   Su, J., Yang, Q., Teo, J. F. and Chung, T. S. (2010). Cellulose acetate nanofiltration hollow fibre membranes for forward osmosis processes. Journal Membrane Science, 355: 36-44.

25.   Yao, J., Wang, J., Ren, M., Liu, J. Z. and Wang. H. (2012). Phase inversion spinning of ultrafine hollow fibre membranes through a single orifice spinneret. Journal Membrane Science, 421-422: 8-14.