Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 820 - 829

 

 

 

 

FIELD-AMPLIFIED SAMPLE INJECTION-CAPILLARY ZONE ELECTROPHORESIS METHOD FOR THE ANALYSIS OF 5-FLUOROURACIL ANTICANCER DRUG

 

(Kaedah Suntikan Sampel Medan Dipertingkat-Elektroforesis Zon Kapilari untuk Analisa Ubat Antikanser 5-Fluorouracil)

 

Nur Shahz Ereena Zulkifli1, Khairil Juhanni Abd Karim1, Noorfatimah Yahaya3, Wan Aini Wan Ibrahim1, 2, Sazlinda Kamaruzaman4, Nur Idayu Mat Ghani1, Aemi Syazwani Abdul Keyon 1, 2*

 

1Department of Chemistry, Faculty of Science

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

Universiti Teknologi Malaysia, 81310 UTM, Johor, Malaysia

3Integrative Medicine Clusters, Advanced Medical and Dental Institute (AMDI),

Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia

4Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author:  aemi@utm.my

 

 

Received: 20 July 2020; Accepted: 11 September 2020; Published:  10 December 2020

 

 

Abstract

Field-amplified sample injection-capillary zone electrophoresis (FASI-CZE) method was developed to enhance the detection sensitivity of anticancer drug 5-fluorouracil (5-FU). The analyte was introduced electrokinetically for 5 s into a capillary loaded with highly conductive background electrolyte (BGE). The injected analyte migrated in negative polarity, reducing separation time to 5 minutes as compared to positive polarity in hydrodynamic injection-CZE (18 minutes). FASI-CZE was optimized based on three parameters: Sample injection time (5 s, 10 s, and 40 s), BGE concentration in sample (3 mM, 5 mM, and 10 mM) and BGE concentration (15 mM and 25 mM). Optimization of FASI-CZE was conducted to achieve optimal conditions as followed: 15 mM borate BGE containing 0.1% w/v hexadimethrine bromide (HDMB), 5-FU and 5-BrU (IS) prepared in 5 mM diluted BGE, 20% v/v organic modifier in mixture sample was injected at -5 kV for 5 s. The separation was conducted using -25 kV and detected at the wavelength of 234 nm in diode array detection (DAD). The precision was reasonable; %RSD 4.43% at low concentration levels (5 mg/L). The LOD value was 0.24 mg/L when applied with FASI as compared to 0.58 mg/L using HDI-CZE. The sensitivity enhancement factor (SEF) was almost 3 times higher than HDI-CZE at positive polarity, showing that the proposed of FASI-CZE approach is appropriate for the study of 5-FU at trace level.

 

Keywords:  5-fluorouracil, field-amplified sample injection, capillary electrophoresis, anticancer drug

 

Abstrak

Kaedah suntikan sampel medan dipertingkat-elektroforesis zon kapilari (FASI-CZE) dibangunkan untuk pertama kalinya bagi meningkatkan kepekaan pengesanan ubat antikanser 5-fluorouracil (5-FU). Analit diperkenal secara elektrokinetik selama 5 s ke dalam kapilari yang dimuatkan dengan elektrolit latar belakang yang sangat konduktif (BGE). Analit yang disuntik berpindah dalam medan kutub negatif, mengurangkan masa pemisahan kepada 5 minit berbanding dengan medan kutub positif dalam suntikan hidrodinamik-CZE (18 minit). FASI-CZE  dioptimumkan berdasarkan tiga parameter: masa suntikan sampel (5s, 10s, dan 40s), kepekatan BGE dalam sampel (3 mM, 5 mM, dan 10 mM), dan kepekatan BGE (15 mM dan 25 mM). Pengoptimuman FASI-CZE dilakukan untuk mencapai keadaan yang optimum. Keadaan optimum untuk FASI-CZE adalah seperti berikut: 15 mM BGE borat yang mengandungi 0.1% w/v heksadimetrin bromida (HDMB), 5-FU dan 5-BrU (IS) yang disiapkan dalam 5 mM BGE cair, 20% v/v pengubah organik dalam campuran sampel disuntik pada voltan -5 kV selama 5 s. Pemisahan dilakukan dengan menggunakan -25 kV voltan dan dikesan pada panjang gelombang 234 nm dalam pengesanan susunan diod (DAD). Ketepatannya wajar; %RSD 4.43% pada tahap kepekatan rendah (5 mg/L). Nilai LOD adalah 0.24 mg/L ketika diterapkan dengan FASI berbanding 0.58 mg/L menggunakan HDI-CZE. Faktor peningkatan kepekaan (SEF) hampir 3 kali lebih tinggi daripada HDI-CZE pada medan kutub  positif, menunjukkan bahawa pendekatan FASI-CZE yang dicadangkan sesuai untuk kajian 5-FU pada tahap kepekatan surih.

 

Kata kunci: 5-fluorouracil, suntikan sampel medan dipertingkat, elektroforesis zon kapilari, elektroforesis kapilari, ubat antikanser

 

References

1.    Abdollahi, Z., Taheri-Kafrani, A., Bahrani, S. A. and Kajani, A. A. (2019). Pegaylated graphene oxide/superparamagnetic nanocomposite as a high-efficiency loading nanocarrier for controlled delivery of methotrexate. Journal of Biotechnology298: 88-97.

2.      National Cancer Institute (2018). Chemotherapy and you. National Cancer Institute, U.S.: pp. 1-55.

3.      Ali, I., Haque, A., Wani, W. A., Saleem, K., and Al Za'abi, M. (2013). Analyses of anticancer drugs by capillary electrophoresis: A review. Biomedical Chromatography, 27(10): 1296-1311.

4.      Usawanuwat, J., Boontanon, N. and Boontanon, S. K. (2014). Analysis of three anticancer drugs (5-fluorouracil, cyclophosphamide and hydroxyurea) in water samples by HPLC-MS/MS. International Journal of Advances in Agricultural & Environmental Engineering1: 72-76.

5.      Saif, M. W., Choma, A., Salamone, S. J. and Chu, E. (2009). Pharmacokinetically guided dose adjustment of 5-fluorouracil: A rational approach to improving therapeutic outcomes. JNCI: Journal of the National Cancer Institute101(22): 1543-1552.

6.      Kosjek, T. and Heath, E. (2011). Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. TrAC Trends in Analytical Chemistry30(7): 1065-1087.

7.      Cirillo, G., Iemma, F., Puoci, F., Parisi, O. I., Curcio, M., Spizzirri, U. G. and Picci, N. (2009). Imprinted hydrophilic nanospheres as drug delivery systems for 5-fluorouracil sustained release. Journal of Drug Targeting17(1): 72-77.

8.      Zalewska, M., Wilk, K., and Milnerowicz, H. (2013). Capillary electrophoresis application in the analysis of the anti-cancer drugs impurities. Acta Poloniae Pharmaceutica70(2): 17180.

9.      Sun, H., Wu, Y., He, P., Zuo, Y. and Lv, Y. (2012). Characterization of interaction between antitumor drug 5-fluorouracil and human serum albumin by affinity capillary electrophoresis. Asian Journal of Pharmaceutical Sciences7(1): 75-79.

10.   Guichard, N., Guillarme, D., Bonnabry, P. and Fleury-Souverain, S. (2017). Antineoplastic drugs and their analysis: A state of the art review. Analyst142(13): 2273-2321.

11.   Forough, M., Farhadi, K., Molaei, R., Khalili, H., Shakeri, R., Zamani, A. and Matin, A. A. (2017). Capillary electrophoresis with online stacking in combination with AgNPs@ MCM-41 reinforced hollow fiber solid-liquid phase microextraction for quantitative analysis of capecitabine and its main metabolite 5-fluorouracil in plasma samples isolated from cancer patients. Journal of Chromatography B1040: 22- 37.

12.   Zhang, Z., Zhang, F. and Liu, Y. (2013). Recent advances in enhancing the sensitivity and resolution of capillary electrophoresis. Journal of Chromatographic Science51(7): 666-683.

13.   Kitagawa, F. and Otsuka, K. (2014). Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. Journal of Chromatography A1335: 43-60.

14.   Xue, Y. and Yeung, E. S. (1994). Characterization of band broadening in capillary electrophoresis due to nonuniform capillary geometries. Analytical Chemistry66(21): 3575-3580.

15.   Bruin, G. J. M., Stegeman, G., Van Asten, A. C., Xu, X., Kraak, J. C. and Poppe, H. (1991). Optimization and evaluation of the performance of arrangements for uv detection in high-resolution separations using fused-silica capillaries. Journal of Chromatography A559(1-2): 163-181.

16.   Chen, X., Tang, Y., Wang, S., Song, Y., Tang, F. and Wu, X. (2015). Field‐amplified sample injection in capillary electrophoresis with amperometric detection for the ultratrace analysis of diastereomeric ephedrine alkaloids. Electrophoresis36(16): 1953-1961.

17.   Rabanes, H. R., Aranas, A. T., Benbow, N. L. and Quirino, J. P. (2012). Synergistic effect of field enhanced sample injection on micelle to solvent stacking in capillary electrophoresis. Journal of Chromatography A1267: 74-79.

18.   Purrà, M., Cinca, R., Legaz, J. and Núñez, O. (2014). Solid-phase extraction and field-amplified sample injection–capillary zone electrophoresis for the analysis of benzophenone UV filters in environmental water samples. Analytical and Bioanalytical Chemistry406(25): 6189-6202.

19.   Hou, X., Deng, D., Wu, X., Lv, Y. and Zhang, J. (2010). Simultaneous stacking of cationic and anionic compounds in single run capillary zone electrophoresis by two-end field amplified sample injection. Journal of Chromatography A1217(35): 5622-5627.

20.   Diasio, R. B. and Harris, B. E. (1989). Clinical pharmacology of 5-fluorouracil. Clinical Pharmacokinetics16(4): 215-237.

21.   Wielińska, J., Nowacki, A. and Liberek, B. (2019). 5-fluorouracil—complete insight into its neutral and ionised forms. Molecules24(20): 3683.

22.   Breadmore, M. C. (2007). Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips. Electrophoresis28(1‐2): 254-281.

23.   Prochazkova, A., Liu, S., Friess, H., Aebi, S., and Thormann, W. (2001). Determination of 5-fluorouracil and 5-fluoro-2’-deoxyuridine-5’-monophosphate in pancreatic cancer cell line and other biological materials using capillary electrophoresis. Journal of Chromatography A, 916: 215-224.

24.   Flores, J. R., Nevado, J. J. B., Penalvo, G. C., and Caceres, M. I. R. (2003). Direct capillary electrophoretic determination of three chemotherapeutic drugs in human urine. Journal of Chromatographia, 57: 493-496.

25.   Lu, H.-j., Guo., Y.-l., Zhang, H. and Ou, Q.-y. (2003). Rapid determination of 5-fluorouracil in plasma using capillary electrophoresis. Journal of Chromatography B, 788(2): 291-296.

26.   Liu, Y., Zhu, P., Huang, Z., Zhou, Li. and Shi, P. (2018). Simultaneous detection of 5-fluorocytosine and 5-fluorouracil in human cells carrying CD/5-FC suicide gene system by using capillary zone electrophoresis. Journal of Chromatography B, 1076: 1-7.

27.   Mahnik, S. N., Rizovski, B., Fuerhacker, M., and Mader, R. M. (2004). Determination of 5-fluorouracil in hospital effluents. Analytical and Bioanalytical Chemistry, 380(1): 31-35.