Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 992 - 1001
SYNTHESIS
OF ORDERED NANOARRAYS ACTIVATED CARBON USING SBA-15 AS HARD TEMPLATE FOR
ADSORPTION OF IBUPROFEN
(Sintesis Karbon Aktif Nano Berketeraturan Menggunakan
SBA-15 Sebagai Templat Keras untuk Penjerapan Ibuprofen)
Maria Ulfa1*,
Didik Prasetyoko2, Hasliza Bahruji3, Wega Trisunaryanti4, Yatim Lailun Nimah2
1Chemistry Education Study Program, Faculty of Teacher Training and
Education,
Sebelas Maret University, Jl. Ir. Sutami
36A, Surakarta 57126, Central Java Indonesia.
2Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Institute of Technology Sepuluh Nopember,
Jl Keputih, Surabaya, 61115, East Java Indonesia
3Centre of Advanced Material and Energy Sciences,
Universiti Brunei Darussalam, Jalan Tungku
Link, BE 1410, Brunei Darussalam
4Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Gadjah Mada University, Jl Sekip Utara Sleman Yogyakarta, Indonesia
*Corresponding author: ulfa.maria2015@gmail.com
Received: 18 July 2019;
Accepted: 20 July 2020; Published: 10
December 2020
Abstract
Ibuprofen is an anti-inflammatory drug
primarily found as a pharmaceutical residue in water and can be removed using
adsorption method. Activated carbon with nanoarrays structure
was produced using SBA-15 as a hard template and further utilised as an adsorbent
for ibuprofen removal. SBA-15 was synthesised using TEOS and Pluronic-F123 as a
mesoporous template, followed by deposition with sucrose as a carbon precursor.
Carbonisation was carried out under N2 flow at 180 °C followed by
pyrolysis at 900 °C to form carbon nanoarrays. The effect of activation using
KOH solution on activated carbon nanoarrays was investigated for ibuprofen
removal. Characterisation using XRD, FTIR, TEM, and N2
adsorption-desorption revealed that the carbon adapted the highly ordered
structure of SBA-15 with the diameter of nanoarrays of ~ 5 nm and surface area
of ~646 m2/g. Investigation of the adsorption of ibuprofen on
activated carbon nanoarrays showed that the adsorption followed the
pseudo-second-order kinetic model with the adsorption capacity of ~ 24.5 mg/g.
Prolonged treatment of carbon with KOH has been shown to affect the adsorption
capacity of ibuprofen due to a decrease in the surface functionality of
carbon.
Keywords: activated ordered nanoarrays carbon,
activated, adsorption, ibuprofen, pore
Ibuprofen adalah ubat anti-radang yang banyak dijumpai sebagai
residu farmasi di dalam air dan dapat disingkirkan dengan kaedah penjerapan.
Karbon aktif dengan struktur susunan-nano dihasilkan menggunakan SBA-15 sebagai
templat keras dan selanjutnya digunakan sebagai penjerap untuk penyingkiran
ibuprofen. SBA-15 disintesis menggunakan TEOS dan Pluronic-F123 sebagai templat
liang-meso diikuti dengan pemendapan menggunakan sukrosa sebagai sumber karbon.
Karbonisasi dilakukan di bawah aliran N2 pada suhu 180 °C diikuti
oleh pirolisis pada suhu 900 °C untuk membentuk karbon susunan-nano. Kesan
pengaktifan menggunakan larutan KOH pada susunan-nano karbon aktif dikaji dalam
penyingkiran ibuprofen. Pencirian menggunakan XRD, FTIR, TEM dan N2
penjerapan-penyerapan menunjukkan karbon menyesuaikan struktur SBA-15 yang
sangat teratur dengan diameter susunan-nano ~ 5 nm dan luas permukaan ~ 646 m2/g.
Kajian penjerapan ibuprofen pada susunan-nano karbon aktif menunjukkan
penjerapan diikuti model kinetik pseudo-urutan-kedua dengan kapasiti penjerapan
~ 24.5 mg/g. Rawatan karbon yang berpanjangan dengan KOH terbukti memberi kesan
kapasiti penjerapan ibuprofen yang disebabkan oleh penurunan fungsi permukaan
karbon.
Kata kunci: karbon aktif susunan-nano, pengaktifan,
penjerapan, ibuprofen, liang
References
1. Zhou, M. Z., Peng, S., Liao, P., Li, M.
and Li, S. (2014). Design of a microencapsulated carbon nanotube-based
microspheres and its application in the colon targeted drug delivery. Drug
Delivery, 21(2): 101-109
2. Liu, M. L., Kong, C., Lu, X., Li, Y., Luo, K. and
Kang, L. (2012).
Close-packed mesoporous carbon polyhedrons derived from colloidal carbon
microspheres for electrochemical energy storage applications. RSC Advances, 2(27): 10310-10315.
3. Wang., F. (2015). Simple synthesis of
novel hierarchical porous carbon microspheres and their application to a
rechargeable lithium-ion batteries. Carbon NY, 81(1): 314-321.
4. Meer, S., Kausar, A. and Iqbal, T. (2016).
Synthesis of multi-walled carbon nanotube/silica nanoparticle/ polystyrene
microsphere /polyaniline-based hybrids for EMI shielding application. Fullerenes,
Nanotube, and Carbon Nanostructures, 24(8): 507-519.
5. Wang, J. and Kaskel, S. (2012). KOH
activation of carbon-based materials for energy storage. Journal of
Materials Chemistry, 22(45): 23710-23725
6. Mestre, J., Pires, J. M. F., Nogueira, Y.
and Carvalho, A. P. (2007). Activated carbons for the adsorption of ibuprofen. Carbon
NY, 45(10): 1979-1988.
7. Kumaresan, S. (2010). S+ Ibuprofen
(Dexibuprofen): The superior conventional non-steroidal antiinflammatory agents
for development of pharmaceuticals. International Journal of Current
Pharmaceutical Research, 2(3): 66-75.
8. Ulfa, M., Didik, P., Mahadi, A. and
Hasliza, B. (2019). Size tunable mesoporous carbon microspheres using Pluronic
F127 and gelatin as co-template for removal of ibuprofen. Science of the
Total Environment, 56 (3): 24-32
9. Nieto-Márquez, A., Valverde, J. L. and
Keane, M. A. (2009). Selective low temperature synthesis of carbon nanospheres
via the catalytic decomposition of trichlorethylene. Applied Catalytic Agent,
352(2): 159-170.
10. Zhang, D. (2017). Scalable synthesis of
hierarchical macropore of activated carbon-rich microspheres assembled by
carbon nanoparticles for high-rate performance supercapacitors, Journal
Power Sources, 342 (1): 363-370.
11. Lua, A. C and Yang, T. (2004). Effect of
activation temperature on the textural and chemical properties of potassium
hydroxide activated carbon prepared from pistachio-nut-shell. Journal of
Colloid and Interface Science, 274 (2): 594-601.
12. Mi, Y. Z. and Liu, Y. L. (2009). A simple
solvothermal route to synthesize carbon microspheres. Xinxing Tan
Cailiao/New Carbon Materials, 24(4): 375-378.
13. Li, J., Zhong, X. Z., Yang, G. J., Lan, H.
D., Tang and Liu H. Z. (2011). Simple synthesis of semi-graphitized ordered
mesoporous carbons with tunable pore sizes. Xinxing Tan Cailiao/New Carbon
Materials, 26(2): 123-129
14. Gorka, C., Fenning, K. and Jaroniec, M.
(2009). Influence of temperature, carbon precursor/ copolymer ratio and acid
concentration on adsorption and structural properties of mesoporous carbons
prepared by soft-templating. Colloids and Surfaces A Physicochemical and Engineering Aspects, 352(1-3): 113-117.
15. Guo, J., Zhang, H. and Liu H. (2016).
Ultra-high Rhodamine B adsorption capacities from an aqueous solution by
activated carbon derived from: Phragmites australis doped with organic acid by
phosphoric acid activation. RSC Advances, 6(47): 40818-40827.
16. Heidari, H., Younesi, A., Rashidi, A. and
Ghoreyshi. A. A. (2014). Evaluation of CO2 adsorption with
eucalyptus wood-based activated carbon modified by ammonia solution through
heat treatment. Chemical Engineering Journal, 254(3): 503-513.
17. Pflitsch, C. (2014). Chemical vapor
infiltration of activated carbon with tetramethylsilane. Carbon NY, 79
(1): 28-35.
18. Ulfa, M., Wega, T., Iif,
I. and Indriana, K. (2018). Wormhole-like mesoporous carbons from gelatine as
multistep infiltration effect. Indonesian
Journal of Chemistry, 16(3): 239-242.
19. Xie, D., Kocaefe, C., Chen, T. and
Kocaefe, Y. (2016). Review of research on template methods in preparation of
nanomaterials. Journal of Nanomaterial, 2016(23): 025-035.
20. Ma, Z., Kyotani, T., Liu, Z., Terasaki, O.
and Tomita, A. (2001). Very high surface area microporous carbon with a
three-dimensional nano-array structure: Synthesis and its molecular structure. Chemistry
of Materials, 13(12): 4413-4415.
21. María E. A., Marisa, P., Magali, B.,
Bénédicte, L., Verónica, B. and Loreana, G. (2020). Synthesis and
characterization of mesoporous SBA-15 and SBA-16 as carriers to improve
albendazole dissolution rate. Saudi Pharmaceutical Journal, 28(1):
15-24.
22. Belmoujahid, Y. M., Bonne, Y., Scudeller, D.,
Schleich, Y., Grohens, B. and Lebeau, A. (2015). SBA-15 mesoporous silica as a super insulating
material.
23. Fröhlich, A. C. R., Ocampo-Pérez, V. Diaz-Blancas, N.
P. G., Salau, G. L. and Dotto. (2018). Three-dimensional mass transfer modeling
of ibuprofen adsorption on activated carbon prepared by sonication. Chemical
Engineering Journal, 341(1): 65-74.
24. Michel O., Laurence R., Sylvie G., Stéphane B.,
Sandrine D., Jean-Marc, L. and Laurent D. (2018). Improving the adsorption
kinetics of ibuprofen on an activated carbon fabric through ultrasound
irradiation: Simulation and experimental studies. Chemical Engineering
Journal, 343(1): 163-172.
25. Syeda N. F., Ali, E. I., El-Shafey, F., Saleh
Al-Busafi, Haider, A. J. and Al-Lawati. (2019). Adsorption of chlorpheniramine
and ibuprofen on surface functionalized activated carbons from deionized water
and spiked hospital wastewater. Journal of Environmental Chemical
Engineering, 7(1): 28-38.
26. Hanen, G., Imadeddine, L., Laurence R., Jean-Marc, L.,
Nizar, B. and Laurent, D. (2020). Removal of ionic liquids and ibuprofen by
adsorption on a microporous activated carbon: Kinetics, isotherms, and pore
sites. Arabian Journal of Chemistry, 13(3): 258-270.