Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 992 - 1001

 

 

 

 

SYNTHESIS OF ORDERED NANOARRAYS ACTIVATED CARBON USING SBA-15 AS HARD TEMPLATE FOR ADSORPTION OF IBUPROFEN

 

(Sintesis Karbon Aktif Nano Berketeraturan Menggunakan SBA-15 Sebagai Templat Keras untuk Penjerapan Ibuprofen)

 

Maria Ulfa1*, Didik Prasetyoko2, Hasliza Bahruji3, Wega Trisunaryanti4, Yatim Lailun Nimah2

 

1Chemistry Education Study Program, Faculty of Teacher Training and Education,

Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Central Java Indonesia.

2Department of Chemistry, Faculty of Mathematics and Natural Sciences,

Institute of Technology Sepuluh Nopember, Jl Keputih, Surabaya, 61115, East Java Indonesia

3Centre of Advanced Material and Energy Sciences,

Universiti Brunei Darussalam, Jalan Tungku Link, BE 1410, Brunei Darussalam

4Department of Chemistry, Faculty of Mathematics and Natural Sciences,

Gadjah Mada University, Jl Sekip Utara Sleman Yogyakarta, Indonesia

 

*Corresponding author:  ulfa.maria2015@gmail.com

 

 

Received: 18 July 2019; Accepted: 20 July 2020; Published:  10 December 2020

 

 

Abstract

Ibuprofen is an anti-inflammatory drug primarily found as a pharmaceutical residue in water and can be removed using adsorption method. Activated carbon with nanoarrays structure was produced using SBA-15 as a hard template and further utilised as an adsorbent for ibuprofen removal. SBA-15 was synthesised using TEOS and Pluronic-F123 as a mesoporous template, followed by deposition with sucrose as a carbon precursor. Carbonisation was carried out under N2 flow at 180 °C followed by pyrolysis at 900 °C to form carbon nanoarrays. The effect of activation using KOH solution on activated carbon nanoarrays was investigated for ibuprofen removal. Characterisation using XRD, FTIR, TEM, and N2 adsorption-desorption revealed that the carbon adapted the highly ordered structure of SBA-15 with the diameter of nanoarrays of ~ 5 nm and surface area of ~646 m2/g. Investigation of the adsorption of ibuprofen on activated carbon nanoarrays showed that the adsorption followed the pseudo-second-order kinetic model with the adsorption capacity of ~ 24.5 mg/g. Prolonged treatment of carbon with KOH has been shown to affect the adsorption capacity of ibuprofen due to a decrease in the surface functionality of carbon. 

 

Keywords:  activated ordered nanoarrays carbon, activated, adsorption, ibuprofen, pore

 

Abstrak

Ibuprofen adalah ubat anti-radang yang banyak dijumpai sebagai residu farmasi di dalam air dan dapat disingkirkan dengan kaedah penjerapan. Karbon aktif dengan struktur susunan-nano dihasilkan menggunakan SBA-15 sebagai templat keras dan selanjutnya digunakan sebagai penjerap untuk penyingkiran ibuprofen. SBA-15 disintesis menggunakan TEOS dan Pluronic-F123 sebagai templat liang-meso diikuti dengan pemendapan menggunakan sukrosa sebagai sumber karbon. Karbonisasi dilakukan di bawah aliran N2 pada suhu 180 °C diikuti oleh pirolisis pada suhu 900 °C untuk membentuk karbon susunan-nano. Kesan pengaktifan menggunakan larutan KOH pada susunan-nano karbon aktif dikaji dalam penyingkiran ibuprofen. Pencirian menggunakan XRD, FTIR, TEM dan N2 penjerapan-penyerapan menunjukkan karbon menyesuaikan struktur SBA-15 yang sangat teratur dengan diameter susunan-nano ~ 5 nm dan luas permukaan ~ 646 m2/g. Kajian penjerapan ibuprofen pada susunan-nano karbon aktif menunjukkan penjerapan diikuti model kinetik pseudo-urutan-kedua dengan kapasiti penjerapan ~ 24.5 mg/g. Rawatan karbon yang berpanjangan dengan KOH terbukti memberi kesan kapasiti penjerapan ibuprofen yang disebabkan oleh penurunan fungsi permukaan karbon.


Kata kunci:  karbon aktif susunan-nano, pengaktifan, penjerapan, ibuprofen, liang

 

References

1.      Zhou, M. Z., Peng, S., Liao, P., Li, M. and Li, S. (2014). Design of a microencapsulated carbon nanotube-based microspheres and its application in the colon targeted drug delivery. Drug Delivery, 21(2): 101-109

2.      Liu, M. L., Kong, C., Lu, X., Li, Y., Luo, K. and Kang, L. (2012). Close-packed mesoporous carbon polyhedrons derived from colloidal carbon microspheres for electrochemical energy storage applications. RSC Advances, 2(27): 10310-10315.

3.      Wang., F. (2015). Simple synthesis of novel hierarchical porous carbon microspheres and their application to a rechargeable lithium-ion batteries. Carbon NY, 81(1): 314-321.

4.      Meer, S., Kausar, A. and Iqbal, T. (2016). Synthesis of multi-walled carbon nanotube/silica nanoparticle/ polystyrene microsphere /polyaniline-based hybrids for EMI shielding application. Fullerenes, Nanotube, and Carbon Nanostructures, 24(8): 507-519.

5.      Wang, J. and Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22(45): 23710-23725

6.      Mestre, J., Pires, J. M. F., Nogueira, Y. and Carvalho, A. P. (2007). Activated carbons for the adsorption of ibuprofen. Carbon NY, 45(10): 1979-1988.

7.      Kumaresan, S. (2010). S+ Ibuprofen (Dexibuprofen): The superior conventional non-steroidal antiinflammatory agents for development of pharmaceuticals. International Journal of Current Pharmaceutical Research, 2(3): 66-75.

8.      Ulfa, M., Didik, P., Mahadi, A. and Hasliza, B. (2019). Size tunable mesoporous carbon microspheres using Pluronic F127 and gelatin as co-template for removal of ibuprofen. Science of the Total Environment, 56 (3): 24-32

9.      Nieto-Márquez, A., Valverde, J. L. and Keane, M. A. (2009). Selective low temperature synthesis of carbon nanospheres via the catalytic decomposition of trichlorethylene. Applied Catalytic Agent, 352(2): 159-170.

10.   Zhang, D. (2017). Scalable synthesis of hierarchical macropore of activated carbon-rich microspheres assembled by carbon nanoparticles for high-rate performance supercapacitors, Journal Power Sources, 342 (1): 363-370.

11.   Lua, A. C and Yang, T. (2004). Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut-shell. Journal of Colloid and Interface Science, 274 (2): 594-601.

12.   Mi, Y. Z. and Liu, Y. L. (2009). A simple solvothermal route to synthesize carbon microspheres. Xinxing Tan Cailiao/New Carbon Materials, 24(4): 375-378.

13.   Li, J., Zhong, X. Z., Yang, G. J., Lan, H. D., Tang and Liu H. Z. (2011). Simple synthesis of semi-graphitized ordered mesoporous carbons with tunable pore sizes. Xinxing Tan Cailiao/New Carbon Materials, 26(2): 123-129

14.   Gorka, C., Fenning, K. and Jaroniec, M. (2009). Influence of temperature, carbon precursor/ copolymer ratio and acid concentration on adsorption and structural properties of mesoporous carbons prepared by soft-templating. Colloids and Surfaces A Physicochemical and Engineering Aspects, 352(1-3): 113-117.

15.   Guo, J., Zhang, H. and Liu H. (2016). Ultra-high Rhodamine B adsorption capacities from an aqueous solution by activated carbon derived from: Phragmites australis doped with organic acid by phosphoric acid activation. RSC Advances, 6(47): 40818-40827.

16.   Heidari, H., Younesi, A., Rashidi, A. and Ghoreyshi. A. A. (2014). Evaluation of CO2 adsorption with eucalyptus wood-based activated carbon modified by ammonia solution through heat treatment. Chemical Engineering Journal, 254(3): 503-513.

17.   Pflitsch, C. (2014). Chemical vapor infiltration of activated carbon with tetramethylsilane. Carbon NY, 79 (1): 28-35.

18.   Ulfa, M., Wega, T., Iif, I. and Indriana, K. (2018). Wormhole-like mesoporous carbons from gelatine as multistep infiltration effect. Indonesian Journal of Chemistry, 16(3): 239-242.

19.   Xie, D., Kocaefe, C., Chen, T. and Kocaefe, Y. (2016). Review of research on template methods in preparation of nanomaterials. Journal of Nanomaterial, 2016(23): 025-035.

20.   Ma, Z., Kyotani, T., Liu, Z., Terasaki, O. and Tomita, A. (2001). Very high surface area microporous carbon with a three-dimensional nano-array structure: Synthesis and its molecular structure. Chemistry of Materials, 13(12): 4413-4415.

21.   María E. A., Marisa, P., Magali, B., Bénédicte, L., Verónica, B. and Loreana, G. (2020). Synthesis and characterization of mesoporous SBA-15 and SBA-16 as carriers to improve albendazole dissolution rate. Saudi Pharmaceutical Journal, 28(1): 15-24.

22.   Belmoujahid, Y. M., Bonne, Y., Scudeller, D., Schleich, Y., Grohens, B. and Lebeau, A. (2015). SBA-15 mesoporous silica as a super insulating material.

23.   Fröhlich, A. C. R., Ocampo-Pérez, V. Diaz-Blancas, N. P. G., Salau, G. L. and Dotto. (2018). Three-dimensional mass transfer modeling of ibuprofen adsorption on activated carbon prepared by sonication. Chemical Engineering Journal, 341(1): 65-74.

24.   Michel O., Laurence R., Sylvie G., Stéphane B., Sandrine D., Jean-Marc, L. and Laurent D. (2018). Improving the adsorption kinetics of ibuprofen on an activated carbon fabric through ultrasound irradiation: Simulation and experimental studies. Chemical Engineering Journal, 343(1): 163-172.

25.   Syeda N. F., Ali, E. I., El-Shafey, F., Saleh Al-Busafi, Haider, A. J. and Al-Lawati. (2019). Adsorption of chlorpheniramine and ibuprofen on surface functionalized activated carbons from deionized water and spiked hospital wastewater. Journal of Environmental Chemical Engineering, 7(1): 28-38.

26.   Hanen, G., Imadeddine, L., Laurence R., Jean-Marc, L., Nizar, B. and Laurent, D. (2020). Removal of ionic liquids and ibuprofen by adsorption on a microporous activated carbon: Kinetics, isotherms, and pore sites. Arabian Journal of Chemistry, 13(3): 258-270.