Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 978 - 991
REMOVAL OF COPPER
IONS FROM AQUEOUS SOLUTIONS USING POLY(VINYLBENZYL CHLORIDE)
(Penyingkiran Ion
Kuprum dari Larutan Akueus Menggunakan Poli(vinilbenzil klorida))
Hamzah Gamal Abdo Allozy and Khairil Juhanni Abd
Karim*
Department of Chemistry, Faculty
of Science,
Universiti Teknologi
Malaysia, 81310 UTM Johor Bahru, Malaysia
*Corresponding
author: kjuhanni@utm.my
Received: 18 July 2019; Accepted: 20 July 2020; Published: 10 December 2020
Abstract
Nowadays, contamination of copper (Cu(II)) has become
one of the worst environmental problems. Due to its environmental resistance
and persistence, the treatment of Cu(II) is crucial. Poly(vinylbenzyl chloride)
(PVBC) was synthesised through reversible addition-fragmentation chain transfer
(RAFT) polymerisation technique utilising monomer vinylbenzyl chloride (VBC),
4-cyanopentanoic acid dithiobenzoate (CPADB) as RAFT agent and 4,4ʹ-Azobis
(4-cyanopentanoic acid) (ACPA) as initiator. This study aims to synthesise PVBC
and to test the ability of PVBC to remove Cu(II) ions from aqueous solution. In
this study, PVBC was successfully synthesised when reacted for 24 h at 80 °C,
and the ability of the PVBC to adsorb and remove Cu(II) ions was investigated.
Important adsorption parameters such as adsorbate concentration, adsorption
dosage, and contact time were studied. The maximum Cu(II) adsorption capacity
(qmax) of PVBC was 263.15 mg/g with a copper removal rate of 95%
under optimum initial concentration (160 mg/L), adsorbent dosage (14 mg), and
contact time (180 min). The experimental results better fit into the Langmuir
adsorption isotherm model than the Freundlich model, and the kinetics
experiments were compared with the pseudo-second-order kinetic model. Polymer
adsorption efficiency was above 90% after five cycles of adsorption and
desorption, but the overall adsorption capability of PVBC for Cu(II) ions began
to decrease after another five cycles from 80% to 54%. Given the outcomes
acquired, it can be concluded that PVBC can be an efficient and potential
adsorbent for the removal of Cu(II) ions from aqueous solution. The adsorption
study showed that PVBC has an affinity to Cu(II) ions. The prepared PVBC is
potentially useful for wastewater treatment applications.
Keywords: removal, copper(II),
poly(vinylbenzyl chloride), isotherm, kinetic
Abstrak
Pada masa kini, pencemaran tembaga(II) (Cu(II)) telah
menjadi salah satu masalah persekitaran yang paling teruk. Oleh kerana
ketahanan persekitarannya, rawatan Cu(II) sangat penting. Poli(vinilbenzil
klorida) (PVBC) disintesis melalui teknik pempolimeran pemindahan rantai
penambahan-fragmentasi boleh dibalikkan (RAFT) yang menggunakan monomer
vinilbenzil klorida (VBC), 4-sianopentanoik asid ditiobenzoat (CPADB) sebagai
agen RAFT dan 4,4ʹ-Azobis (asid 4-sianopentanoik) (ACPA) sebagai bahan
pemula. Tujuan kajian ini adalah untuk mensintesis PVBC dan menguji kemampuan
PVBC menyingkirkan ion Cu(II) dari larutan berair. Dalam kajian ini, PVBC
berjaya disintesis selama 24 jam pada suhu 80 °C dan kemampuan PVBC untuk
menjerap dan menyingkirkan ion Cu(II) telah dikaji. Parameter penjerapan
penting seperti kepekatan adsorbat, dos penjerapan dan masa hubungan dikaji.
Kapasiti penjerapan maksimum (qmax) Cu(II) PVBC adalah 263.15 mg/g
dengan kadar penyingkiran tembaga 95% di bawah keadaan optimum kepekatan awal
(160 mg/L), dos bahan penjerap (14 mg), dan masa hubungan (180 min). Data
eksperimen lebih sesuai dengan model isoterm penjerapan Langmuir daripada model
Freundlich dan kajian kinetik dihubungkan dengan model kinetik pseudo-jujukan
kedua. Keupayaan penjerapan polimer melebihi tahap 90% setelah lima kitaran
penjerapan tetapi keupayaan penjerapan jumlah PVBC untuk ion Cu(II) mula
menurun setelah lima kitaran lain iaitu dari 80% hingga 54%. Daripada hasil
yang diperolehi, dapat disimpulkan bahawa PVBC dapat menjadi bahan penjerap
yang efektif dan berpotensi untuk menyingkirkan ion Cu(II) dari larutan berair.
Kajian penjerapan menunjukkan bahawa PVBC mempunyai pertalian dengan ion
Cu(II). PVBC yang disediakan terbukti berpotensi baik untuk aplikasi dalam
rawatan air sisa.
Kata kunci:
penyingkiran, kuprum(II), poli(vinilbenzil klorida),
isoterma, kinetic, penggunaan semula
References
1. Moraes, J., Ohno, K., Gody,
G., Maschmeyer, T. and Perrier, S. (2013). The synthesis of well-defined poly
(vinylbenzyl chloride)-grafted nanoparticles via RAFT polymerization. Beilstein
Journal of Organic Chemistry, 9(1): 1226-1234.
2. Bayramoglu,
G., Yavuz, E., Senkal, B. F. and Arica, M. Y. (2009). Glycidyl methacrylate
grafted on p (VBC) beads by SI-ATRP technique: Modified with hydrazine as a
salt resistance ligand for adsorption of invertase. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 345(1-3): 127-134.
3. Chen,
Y., Chen, G. and Stenzel, M. H. (2010). Synthesis and lectin recognition of glyco
star polymers prepared by “Clicking” thiocarbohydrates onto a reactive
scaffold. Macromolecules, 43(19): 8109-8114.
4. Fu,
G. D., Xu, L. Q., Yao, F., Zhang, K., Wang, X. F., Zhu, M. F. and Nie, S. Z.
(2009). Smart nanofibers from combined living radical polymerization,“click
chemistry”, and electrospinning. ACS Applied Materials & Interfaces, 1(2):
239-243..
5. Quinn,
J. F., Chaplin, R. P. and Davis, T. P. (2002). Facile synthesis of comb, star,
and graft polymers via reversible addition–fragmentation chain transfer (RAFT)
polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 40(17):
2956-2966.
6. Strube,
O. I. and Schmidt‐Naake, G. (2009). Synthesis of reactive triblock
copolymers via reversible addition‐fragmentation chain transfer (RAFT)
polymerization. In Macromolecular Symposia, 275(1): pp. 13-23.
7. Couture,
G. and Améduri, B. (2012). Kinetics of RAFT homopolymerisation of vinylbenzyl
chloride in the presence of xanthate or trithiocarbonate. European Polymer
Journal, 48(7): 1348-1356.
8. Feng,
H., Zhao, Y., Pelletier, M., Dan, Y. and Zhao, Y. (2009). Synthesis of
photo-and pH-responsive composite nanoparticles using a two-step controlled
radical polymerization method. Polymer, 50(15): 3470-3477.
9. Chiefari,
J., Chong, Y. K., Ercole, F., Krstina, J., Jeffery, J., Le, T. P. and Rizzardo,
E. (1998). Living free-radical polymerization by reversible addition−fragmentation
chain transfer: the RAFT process. Macromolecules, 31(16): 5559-5562.
10. Moad,
G., Rizzardo, E. and Thang, S. H. (2005). Living radical polymerization by the
RAFT process. Australian Journal of Chemistry, 58(6): 379-410.
11. Bai,
W., Zhang, L., Bai, R. and Zhang, G. (2008). A very useful redox initiator for
aqueous RAFT polymerization of n‐isopropylacrylamide and acrylamide at
room temperature. Macromolecular Rapid Communications, 29(7): 562-566.
12. Moad,
G. (2019). A critical survey of dithiocarbamate reversible
addition‐fragmentation chain transfer (RAFT) agents in radical
polymerization. Journal of Polymer Science Part A: Polymer Chemistry,
57(3): 216-227.
13. Quinn,
J. F., Davis, T. P., Barner, L. and Barner-Kowollik, C. (2007). The application
of ionizing radiation in reversible addition–fragmentation chain transfer
(RAFT) polymerization: Renaissance of a key synthetic and kinetic tool. Polymer,
48(22): 6467-6480.
14. Jachuła,
J., Kołodyńska, D. and Hubicki, Z. (2011). Sorption of Cu(II) and
Ni(II) ions in the presence of the methylglycinediacetic acid by microporous
ion exchangers and sorbents from aqueous solutions. Open Chemistry, 9(1):
52-65.
15. Chuah,
T. G., Jumasiah, A., Azni, I., Katayon, S. and Choong, S. T. (2005). Rice husk
as a potentially low-cost biosorbent for heavy metal and dye removal: an
overview. Desalination, 175(3): 305-316.
16. Nuhoglu,
Y., Malkoc, E., Gürses, A. and Canpolat, N. (2002). The removal of Cu(II) from
aqueous solutions by Ulothrix zonata. Bioresource Technology, 85(3),
331-333.
17. Ngah,
W. W., Endud, C. S. and Mayanar, R. (2002). Removal of copper(II) ions from
aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and
Functional Polymers, 50(2): 181-190.
18. Manahan,
S. (2017). Environmental Chemistry. 10th edition. CRC press.
19. Lin,
L. C., Li, J. K. and Juang, R. S. (2008). Removal of Cu(II) and Ni(II) from
aqueous solutions using batch and fixed-bed ion exchange processes. Desalination,
225(1-3): 249-259.
20. Juang,
R. S. and Shiau, R. C. (2000). Metal removal from aqueous solutions using
chitosan-enhanced membrane filtration. Journal of Membrane Science, 165(2):
159-167.
21. Chen,
Y., Pan, B., Li, H., Zhang, W., Lv, L. and Wu, J. (2010). Selective removal of
Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI)
nanoclusters. Environmental Science & Technology, 44(9): 3508-3513.
22. Xiao,
S., Ma, H., Shen, M., Wang, S., Huang, Q. and Shi, X. (2011). Excellent copper
(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun
polymer nanofibrous mats. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 381(1-3): 48-54.
23. Abadi,
M. D. M., Ashraf, N., Chamsaz, M. and Shemirani, F. (2012). An overview of
liquid phase microextraction approaches combined with UV–Vis spectrophotometry.
Talanta, 99: 1-12.
24. Huang,
Y., Wu, D., Wang, X., Huang, W., Lawless, D. and Feng, X. (2016). Removal of
heavy metals from water using polyvinylamine by polymer-enhanced
ultrafiltration and flocculation. Separation and Purification Technology, 158:
124-136.
25. Samadi,
N., Ansari, R. and Khodavirdilo, B. (2017). Removal of copper ions from aqueous
solutions using polymer derivations of poly (styrene-alt-maleic anhydride). Egyptian
Journal of Petroleum, 26(2): 375-389.
26. Singh,
V., Kumari, P., Pandey, S. and Narayan, T. (2009). Removal of chromium (VI)
using poly (methylacrylate) functionalized guar gum. Bioresource Technology,
100(6): 1977-1982.
27. Aksu,
Z. and Gönen, F. (2004). Biosorption of phenol by immobilized activated sludge
in a continuous packed bed: prediction of breakthrough curves. Process
Biochemistry, 39(5): 599-613.
28. Lofrano,
G., Carotenuto, M., Libralato, G., Domingos, R. F., Markus, A., Dini, L. and
Chattopadhyaya, M. C. (2016). Polymer functionalized nanocomposites for metals
removal from water and wastewater: an overview. Water Research, 92:
22-37.
29. Dou,
J., Huang, Q., Huang, H., Gan, D., Chen, J., Deng, F. and Wei, Y. (2019).
Mussel-inspired preparation of layered double hydroxides based polymer
composites for removal of copper ions. Journal of Colloid and Interface
Science, 533: 416-427.
30. Hosseinzadeh,
H., Pashaei, S., Hosseinzadeh, S., Khodaparast, Z., Ramin, S. and Saadat, Y.
(2018). Preparation of novel multi-walled carbon nanotubes nanocomposite
adsorbent via RAFT technique for the adsorption of toxic copper ions. Science
of the Total Environment, 640: 303-314.
31. Akhavan,
B., Jarvis, K. and Majewski, P. (2015). Plasma polymer-functionalized silica
particles for heavy metals removal. ACS Applied Materials & Interfaces,
7(7): 4265-4274.
32. Tan,
P., Wen, J., Hu, Y. and Tan, X. (2016). Adsorption of Cu2+ and Cd2+
from aqueous solution by novel electrospun poly (vinyl alcohol)/graphene oxide
nanofibers. RSC Advances, 6(83): 79641-79650.
33. Chávez-Guajardo,
A. E., Medina-Llamas, J. C., Maqueira, L., Andrade, C. A., Alves, K. G. and de
Melo, C. P. (2015). Efficient removal of Cr(VI) and Cu(II) ions from aqueous
media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic
nanocomposites. Chemical Engineering Journal, 281: 826-836.
34. Li,
J., Xu, Z., Wu, W., Jing, Y., Dai, H. and Fang, G. (2018). Nanocellulose/Poly
(2-(dimethylamino) ethyl methacrylate) Interpenetrating polymer network
hydrogels for removal of Pb(II) and Cu(II) ions. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 538: 474-480.
35. Lin,
Y., Hong, Y., Song, Q., Zhang, Z., Gao, J. and Tao, T. (2017). Highly efficient
removal of copper ions from water using poly (acrylic acid)-grafted chitosan
adsorbent. Colloid and Polymer Science, 295(4): 627-635.
36. Zhang,
W., Yun, M., Yu, Z., Chen, D. and Li, X. (2019). A novel Cu(II) ion-imprinted
alginate–chitosan complex adsorbent for selective separation of Cu(II) from
aqueous solution. Polymer Bulletin, 76(4): 1861-1876.
37. Karthik,
R. and Meenakshi, S. (2015). Removal of Pb(II) and Cd(II) ions from aqueous
solution using polyaniline grafted chitosan. Chemical Engineering Journal, 263:
168-177.
38. Ong,
S. T., Tay, E. H., Ha, S. T., Lee, W. N. and Keng, P. S. (2009). Equilibrium
and continuous flow studies on the sorption of Congo Red using ethylenediamine
modified rice hulls. International Journal of Physical Sciences, 4(11):
683-690.
39. Balarak,
D., Mostafapour, F. K., Azarpira, H. and Joghataei, A. (2017). Langmuir,
Freundlich, Temkin and Dubinin–radushkevich isotherms studies of equilibrium
sorption of ampicilin unto montmorillonite nanoparticles. Journal of
Pharmaceutical Research International, 2017: 1-9.
40. Gu,
J., Yuan, S., Shu, W., Jiang, W., Tang, S., Liang, B. and Pehkonen, S. O.
(2016). PVBC microspheres tethered with poly (3-sulfopropyl methacrylate)
brushes for effective removal of Pb(II) ions from aqueous solution. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 498: 218-230.
41. Lapwanit,
S., Trakulsujaritchok, T. and Nongkhai, P. N. (2016). Chelating magnetic
copolymer composite modified by click reaction for removal of heavy metal ions
from aqueous solution. Chemical Engineering Journal, 289:
286-295.