Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 978 - 991

 

 

 

 

REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTIONS USING POLY(VINYLBENZYL CHLORIDE)

 

(Penyingkiran Ion Kuprum dari Larutan Akueus Menggunakan Poli(vinilbenzil klorida))

 

Hamzah Gamal Abdo Allozy and Khairil Juhanni Abd Karim*

 

Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia

 

*Corresponding author:  kjuhanni@utm.my

 

 

Received: 18 July 2019; Accepted: 20 July 2020; Published:  10 December 2020

 

 

Abstract

Nowadays, contamination of copper (Cu(II)) has become one of the worst environmental problems. Due to its environmental resistance and persistence, the treatment of Cu(II) is crucial. Poly(vinylbenzyl chloride) (PVBC) was synthesised through reversible addition-fragmentation chain transfer (RAFT) polymerisation technique utilising monomer vinylbenzyl chloride (VBC), 4-cyanopentanoic acid dithiobenzoate (CPADB) as RAFT agent and 4,4ʹ-Azobis (4-cyanopentanoic acid) (ACPA) as initiator. This study aims to synthesise PVBC and to test the ability of PVBC to remove Cu(II) ions from aqueous solution. In this study, PVBC was successfully synthesised when reacted for 24 h at 80 °C, and the ability of the PVBC to adsorb and remove Cu(II) ions was investigated. Important adsorption parameters such as adsorbate concentration, adsorption dosage, and contact time were studied. The maximum Cu(II) adsorption capacity (qmax) of PVBC was 263.15 mg/g with a copper removal rate of 95% under optimum initial concentration (160 mg/L), adsorbent dosage (14 mg), and contact time (180 min). The experimental results better fit into the Langmuir adsorption isotherm model than the Freundlich model, and the kinetics experiments were compared with the pseudo-second-order kinetic model. Polymer adsorption efficiency was above 90% after five cycles of adsorption and desorption, but the overall adsorption capability of PVBC for Cu(II) ions began to decrease after another five cycles from 80% to 54%. Given the outcomes acquired, it can be concluded that PVBC can be an efficient and potential adsorbent for the removal of Cu(II) ions from aqueous solution. The adsorption study showed that PVBC has an affinity to Cu(II) ions. The prepared PVBC is potentially useful for wastewater treatment applications.

 

Keywords:  removal, copper(II), poly(vinylbenzyl chloride), isotherm, kinetic

 

Abstrak

Pada masa kini, pencemaran tembaga(II) (Cu(II)) telah menjadi salah satu masalah persekitaran yang paling teruk. Oleh kerana ketahanan persekitarannya, rawatan Cu(II) sangat penting. Poli(vinilbenzil klorida) (PVBC) disintesis melalui teknik pempolimeran pemindahan rantai penambahan-fragmentasi boleh dibalikkan (RAFT) yang menggunakan monomer vinilbenzil klorida (VBC), 4-sianopentanoik asid ditiobenzoat (CPADB) sebagai agen RAFT dan 4,4ʹ-Azobis (asid 4-sianopentanoik) (ACPA) sebagai bahan pemula. Tujuan kajian ini adalah untuk mensintesis PVBC dan menguji kemampuan PVBC menyingkirkan ion Cu(II) dari larutan berair. Dalam kajian ini, PVBC berjaya disintesis selama 24 jam pada suhu 80 °C dan kemampuan PVBC untuk menjerap dan menyingkirkan ion Cu(II) telah dikaji. Parameter penjerapan penting seperti kepekatan adsorbat, dos penjerapan dan masa hubungan dikaji. Kapasiti penjerapan maksimum (qmax) Cu(II) PVBC adalah 263.15 mg/g dengan kadar penyingkiran tembaga 95% di bawah keadaan optimum kepekatan awal (160 mg/L), dos bahan penjerap (14 mg), dan masa hubungan (180 min). Data eksperimen lebih sesuai dengan model isoterm penjerapan Langmuir daripada model Freundlich dan kajian kinetik dihubungkan dengan model kinetik pseudo-jujukan kedua. Keupayaan penjerapan polimer melebihi tahap 90% setelah lima kitaran penjerapan tetapi keupayaan penjerapan jumlah PVBC untuk ion Cu(II) mula menurun setelah lima kitaran lain iaitu dari 80% hingga 54%. Daripada hasil yang diperolehi, dapat disimpulkan bahawa PVBC dapat menjadi bahan penjerap yang efektif dan berpotensi untuk menyingkirkan ion Cu(II) dari larutan berair. Kajian penjerapan menunjukkan bahawa PVBC mempunyai pertalian dengan ion Cu(II). PVBC yang disediakan terbukti berpotensi baik untuk aplikasi dalam rawatan air sisa.

 

Kata kunci:  penyingkiran, kuprum(II), poli(vinilbenzil klorida), isoterma, kinetic, penggunaan semula

 

References

1.      Moraes, J., Ohno, K., Gody, G., Maschmeyer, T. and Perrier, S. (2013). The synthesis of well-defined poly (vinylbenzyl chloride)-grafted nanoparticles via RAFT polymerization. Beilstein Journal of Organic Chemistry, 9(1): 1226-1234.

2.      Bayramoglu, G., Yavuz, E., Senkal, B. F. and Arica, M. Y. (2009). Glycidyl methacrylate grafted on p (VBC) beads by SI-ATRP technique: Modified with hydrazine as a salt resistance ligand for adsorption of invertase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345(1-3): 127-134.

3.      Chen, Y., Chen, G. and Stenzel, M. H. (2010). Synthesis and lectin recognition of glyco star polymers prepared by “Clicking” thiocarbohydrates onto a reactive scaffold. Macromolecules, 43(19): 8109-8114.

4.      Fu, G. D., Xu, L. Q., Yao, F., Zhang, K., Wang, X. F., Zhu, M. F. and Nie, S. Z. (2009). Smart nanofibers from combined living radical polymerization,“click chemistry”, and electrospinning. ACS Applied Materials & Interfaces, 1(2): 239-243..

5.      Quinn, J. F., Chaplin, R. P. and Davis, T. P. (2002). Facile synthesis of comb, star, and graft polymers via reversible addition–fragmentation chain transfer (RAFT) polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 40(17): 2956-2966.

6.      Strube, O. I. and Schmidt‐Naake, G. (2009). Synthesis of reactive triblock copolymers via reversible addition‐fragmentation chain transfer (RAFT) polymerization. In Macromolecular Symposia, 275(1): pp. 13-23.

7.      Couture, G. and Améduri, B. (2012). Kinetics of RAFT homopolymerisation of vinylbenzyl chloride in the presence of xanthate or trithiocarbonate. European Polymer Journal, 48(7): 1348-1356.

8.      Feng, H., Zhao, Y., Pelletier, M., Dan, Y. and Zhao, Y. (2009). Synthesis of photo-and pH-responsive composite nanoparticles using a two-step controlled radical polymerization method. Polymer, 50(15): 3470-3477.

9.      Chiefari, J., Chong, Y. K., Ercole, F., Krstina, J., Jeffery, J., Le, T. P. and Rizzardo, E. (1998). Living free-radical polymerization by reversible addition−fragmentation chain transfer: the RAFT process. Macromolecules, 31(16): 5559-5562.

10.   Moad, G., Rizzardo, E. and Thang, S. H. (2005). Living radical polymerization by the RAFT process. Australian Journal of Chemistry, 58(6): 379-410.

11.   Bai, W., Zhang, L., Bai, R. and Zhang, G. (2008). A very useful redox initiator for aqueous RAFT polymerization of n‐isopropylacrylamide and acrylamide at room temperature. Macromolecular Rapid Communications, 29(7): 562-566.

12.   Moad, G. (2019). A critical survey of dithiocarbamate reversible addition‐fragmentation chain transfer (RAFT) agents in radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 57(3): 216-227.

13.   Quinn, J. F., Davis, T. P., Barner, L. and Barner-Kowollik, C. (2007). The application of ionizing radiation in reversible addition–fragmentation chain transfer (RAFT) polymerization: Renaissance of a key synthetic and kinetic tool. Polymer, 48(22): 6467-6480.

14.   Jachuła, J., Kołodyńska, D. and Hubicki, Z. (2011). Sorption of Cu(II) and Ni(II) ions in the presence of the methylglycinediacetic acid by microporous ion exchangers and sorbents from aqueous solutions. Open Chemistry, 9(1): 52-65.

15.   Chuah, T. G., Jumasiah, A., Azni, I., Katayon, S. and Choong, S. T. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175(3): 305-316.

16.   Nuhoglu, Y., Malkoc, E., Gürses, A. and Canpolat, N. (2002). The removal of Cu(II) from aqueous solutions by Ulothrix zonata. Bioresource Technology, 85(3), 331-333.

17.   Ngah, W. W., Endud, C. S. and Mayanar, R. (2002). Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymers, 50(2): 181-190.

18.   Manahan, S. (2017). Environmental Chemistry. 10th edition. CRC press.

19.   Lin, L. C., Li, J. K. and Juang, R. S. (2008). Removal of Cu(II) and Ni(II) from aqueous solutions using batch and fixed-bed ion exchange processes. Desalination, 225(1-3): 249-259.

20.   Juang, R. S. and Shiau, R. C. (2000). Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. Journal of Membrane Science, 165(2): 159-167.

21.   Chen, Y., Pan, B., Li, H., Zhang, W., Lv, L. and Wu, J. (2010). Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters. Environmental Science & Technology, 44(9): 3508-3513.

22.   Xiao, S., Ma, H., Shen, M., Wang, S., Huang, Q. and Shi, X. (2011). Excellent copper (II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 381(1-3): 48-54.

23.   Abadi, M. D. M., Ashraf, N., Chamsaz, M. and Shemirani, F. (2012). An overview of liquid phase microextraction approaches combined with UV–Vis spectrophotometry. Talanta, 99: 1-12.

24.   Huang, Y., Wu, D., Wang, X., Huang, W., Lawless, D. and Feng, X. (2016). Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Separation and Purification Technology, 158: 124-136.

25.   Samadi, N., Ansari, R. and Khodavirdilo, B. (2017). Removal of copper ions from aqueous solutions using polymer derivations of poly (styrene-alt-maleic anhydride). Egyptian Journal of Petroleum, 26(2): 375-389.

26.   Singh, V., Kumari, P., Pandey, S. and Narayan, T. (2009). Removal of chromium (VI) using poly (methylacrylate) functionalized guar gum. Bioresource Technology, 100(6): 1977-1982.

27.   Aksu, Z. and Gönen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochemistry, 39(5): 599-613.

28.   Lofrano, G., Carotenuto, M., Libralato, G., Domingos, R. F., Markus, A., Dini, L. and Chattopadhyaya, M. C. (2016). Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Research, 92: 22-37.

29.   Dou, J., Huang, Q., Huang, H., Gan, D., Chen, J., Deng, F. and Wei, Y. (2019). Mussel-inspired preparation of layered double hydroxides based polymer composites for removal of copper ions. Journal of Colloid and Interface Science, 533: 416-427.

30.   Hosseinzadeh, H., Pashaei, S., Hosseinzadeh, S., Khodaparast, Z., Ramin, S. and Saadat, Y. (2018). Preparation of novel multi-walled carbon nanotubes nanocomposite adsorbent via RAFT technique for the adsorption of toxic copper ions. Science of the Total Environment, 640: 303-314.

31.   Akhavan, B., Jarvis, K. and Majewski, P. (2015). Plasma polymer-functionalized silica particles for heavy metals removal. ACS Applied Materials & Interfaces, 7(7): 4265-4274.

32.   Tan, P., Wen, J., Hu, Y. and Tan, X. (2016). Adsorption of Cu2+ and Cd2+ from aqueous solution by novel electrospun poly (vinyl alcohol)/graphene oxide nanofibers. RSC Advances, 6(83): 79641-79650.

33.   Chávez-Guajardo, A. E., Medina-Llamas, J. C., Maqueira, L., Andrade, C. A., Alves, K. G. and de Melo, C. P. (2015). Efficient removal of Cr(VI) and Cu(II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chemical Engineering Journal, 281: 826-836.

34.   Li, J., Xu, Z., Wu, W., Jing, Y., Dai, H. and Fang, G. (2018). Nanocellulose/Poly (2-(dimethylamino) ethyl methacrylate) Interpenetrating polymer network hydrogels for removal of Pb(II) and Cu(II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538: 474-480.

35.   Lin, Y., Hong, Y., Song, Q., Zhang, Z., Gao, J. and Tao, T. (2017). Highly efficient removal of copper ions from water using poly (acrylic acid)-grafted chitosan adsorbent. Colloid and Polymer Science, 295(4): 627-635.

36.   Zhang, W., Yun, M., Yu, Z., Chen, D. and Li, X. (2019). A novel Cu(II) ion-imprinted alginate–chitosan complex adsorbent for selective separation of Cu(II) from aqueous solution. Polymer Bulletin, 76(4): 1861-1876.

37.   Karthik, R. and Meenakshi, S. (2015). Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chemical Engineering Journal, 263: 168-177.

38.   Ong, S. T., Tay, E. H., Ha, S. T., Lee, W. N. and Keng, P. S. (2009). Equilibrium and continuous flow studies on the sorption of Congo Red using ethylenediamine modified rice hulls. International Journal of Physical Sciences, 4(11): 683-690.

39.   Balarak, D., Mostafapour, F. K., Azarpira, H. and Joghataei, A. (2017). Langmuir, Freundlich, Temkin and Dubinin–radushkevich isotherms studies of equilibrium sorption of ampicilin unto montmorillonite nanoparticles. Journal of Pharmaceutical Research International, 2017: 1-9.

40.   Gu, J., Yuan, S., Shu, W., Jiang, W., Tang, S., Liang, B. and Pehkonen, S. O. (2016). PVBC microspheres tethered with poly (3-sulfopropyl methacrylate) brushes for effective removal of Pb(II) ions from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 498: 218-230.

41.   Lapwanit, S., Trakulsujaritchok, T. and Nongkhai, P. N. (2016). Chelating magnetic copolymer composite modified by click reaction for removal of heavy metal ions from aqueous solution. Chemical Engineering Journal, 289: 286-295.