Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 970 - 977
PHYTOCHEMICAL ANALYSIS AND ISOLATION OF SECONDARY METABOLITES FROM Persea declinata
(Analisis Fitokimia dan Pengasingan Metabolit Sekunder Daripada
Persea declinata)
Sani Aliyu1,2,
Norazah Basar1*, Yakubu Rufai1,3, Shamsul
Khamis4
1 Department of
Chemistry, Faculty of Science,
Universiti Teknologi Malaysia, 81310 Johor Bahru,
Johor, Malaysia
2 Department of
Chemistry,
Kaduna State University, P.M.B 2339, Tafawa Balewa
Way, Kaduna, Nigeria
3Department of
Chemistry,
Federal College of Education Okene, P.M.B 1062 Kogi
State, Nigeria
4School of Environment
and Natural Resources Sciences, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding
author: norazahb@utm.my
Received: 18 July 2019;
Accepted: 20 July 2020; Published: 10 December 2020
Abstract
Phytochemical analysis
of Persea declinata leaves and
stembark extracts exhibited the presence of cardiac glycosides, coumarins,
reducing sugars, steroids, flavonoids, tannins, and phenolic compounds. Sesamin
(1), g-sitosterol (2), and palmitic acid (3) were isolated for the first time from ethyl acetate extract of the stembark of P. declinata by chromatographic methods. Their structures were elucidated based on
spectroscopic analysis such as infrared (IR), gas chromatography-mass
spectroscopy (GC-MS), nuclear magnetic resonance (NMR), and also involved
comparison with data from literatures.
Keywords: Persea declinata, phytochemicals,
sesamin, gamma sitosterol, palmitic acid
Abstrak
Analisis
fitokimia ke atas daun dan kulit batang Persea
declinata menunjukkan kehadiran sebatian glikosida kardiak, kumarin, gula
penurun, steroid, flavonoid, tanin dan sebatian fenolik. Sesamin (1), g-sitosterol
(2), dan asid palmitik (3) telah diasingkan buat pertama kali
daripada ekstrak etil asetat kulit batang P.
declinata menggunakan kaedah kromatografi. Struktur sebatian telah dicirikan berdasarkan
analisis spektroskopi seperti inframerah (IR), kromatografi gas-spektroskopi
jisim (GC-MS), resonans magnet nuklear (NMR) dan juga melibatkan perbandingan
data dengan kajian lepas.
Kata kunci: Persea declinata, fitokimia, sesamin,
gamma sitosterol, asid palmitik
References
1. Liu, R. H. (2003). Health benefits of
fruit and vegetables are from additive and synergistic combinations of
phytochemicals. American Journal of Clinical Nutrition, 78:
3-6.
2. Adeyemi, O. O., Okpo, S. O. and Ogunti,
O. O. (2002). Analgesic and anti-inflammatory effects of the aqueous extract of
leaves of Persea americana Mill Lauraceae. Fitoterapia, 73(5):
375-380.
3. Alvárez, J. M., Cuca, L. E.,
Carrasco-Pancorbo, A., Ruiz-Muelle, A. B., Fernández, I. and Fernández-Gutiérrez,
A. (2016). Phenolic constituents of leaves from Persea caerulea Ruiz
& Pav; Mez (Lauraceae). Biochemical Systematics and Ecology,
67: 53-57.
4. Yasir, M., Das, S. and Kharya, M. D.
(2010). The phytochemical and pharmacological profile of Persea americana
Mill. Pharmacognosy Reviews,
4(7): 77-84.
5. Pahua-Ramos, M. E., Ortiz-Moreno, A.,
Chamorro-Cevallos, G., Hernández-Navarro, M. D., Garduño-Siciliano, L.,
Necoechea-Mondragón, H., and Hernández-Ortega, M. (2012) Hypolipidemic effect
of avocado (Persea americana mill) seed in a hypercholesterolemic mouse
model. Plant Foods for Human Nutrition, 67(1): 10-16.
6. Abe, F., Nagafuji, S., Okawa, M.,
Kinjo, J., Akahane, H., Ogura, T, Martinez-Alfaro, M. A. and Reyes-Chilpa, R.
(2005). Trypanocidal constituents in plants 5. Evaluation of some mexican
plants for their trypanocidal activity and active constituents in the seeds of Persea
americana. Biological & Pharmaceutical Bulletin, 28(7):
1314-1317.
7. Oberlies, N. H., Rogers, L. L.,
Martin, J. M. and McLaughlin, J. L. (1998). Cytotoxic and insecticidal
constituents of the unripe fruit of Persea americana. Journal of
Natural Products, 61(6): 781-785.
8. Chang, C. F., Isogai, A., Kamikado,
T., Murakoshi, S., Sakurai, A. and Tamura, S. (1975). Isolation and structure elucidation
of growth inhibitors for silkworm larvae from avocado leaves. Agricultural and
Biological Chemistry, 39(5): 1167-1168.
9. Lu, Y-C., Chang, H-S., Peng, C-F.,
Lin, C-H. and Chen, I-S. (2012). Secondary metabolites from the unripe pulp of Persea
americana and their antimycobacterial activities. Food Chemistry,
135: 2904-2909
10. Gowda, D. C., Gowda, J. P. and
Anjaneyalu, Y. V. (1982). Structure of an arabinoxylan from the bark of Persea
macrantha (Lauraceae). Carbohydrate Research, 108(2): 261-267.
11. Lee, T. H., Tsai, Y. F., Huang, T.
T., Chen, P. Y., Liang, W. L. and Lee, C. K. (2012). Heptadecanols from the
leaves of Persea americana var. americana. Food Chemistry,
132(2): 921-924.
12. Li Y., Xie, S., Ying, J., Wei, W. and
Gao, K. (2018). Chemical structures of lignans and neolignans isolated from
lauraceae. Molecules, 23(12): 3164.
13. Fukuda, Y., Osawa, T., Namiki, M. and
Ozaki, T. (1985). Studies on antioxidative substances in sesame seed. Agricultural
and Bilological Chemistry, 49(2): 301-306.
14. Lv, D., Zhu, C. Q. and Liu, L.
(2015). Sesamin ameliorates oxidative liver injury induced by carbon
tetrachloride in rat. International Journal of Clinical and
Experimental Pathology, 8(5): 5733-5738.
15. Balamurugan, R., Stalin, A. and
Ignacimuthu, S. (2012). Molecular docking of γ -sitosterol with some
targets related to diabetes. European Journal of Medicinal
Chemistry, 47: 38-43.
16. Balamurugan, R., Duraipandiyan, V.
and Ignacimuthu, S. (2011). Antidiabetic activity of γ-sitosterol isolated
from Lippia nodiflora L. in streptozotocin induced diabetic rats. European Journal
of Pharmacology, 667(1–3): 410-418.
17. Bulama, J. S, Dangoggo, S. M. and
Mathias, S. N. (2014). Isolation and characterization of palmitic acid from
ethyl acetate extract of root bark of Terminalia glaucescens. Chemistry of Materials,
6(12): 140-144.
18. Krishnan, K. R., James, F. and Mohan,
A. (2016). Isolation and characterization of n-hexadecanoic acid from Canthium
parviflorum leaves. Journal of Chemical and Pharmaceutical
Research, 8(8): 614–617.
19. Ravi, L. and Krishnan, K. (2017).
Cytotoxic potential of n-hexadecanoic acid extracted from Kigelia pinnata
leaves. Asian Journal of Cell
Biology, 12(1): 20-27.
20. Narrima, P., Paydar, M., Looi, C. Y.,
Wong, Y. L., Taha, H., Wong, W. F., Mohd, M. A. and Hadi A. H. (2014). Persea declinata (Bl.) Kosterm bark
crude extract induces apoptosis in MCF-7 Cells via G0/G1 cell cycle arrest,
Bcl-2/Bax/ Bcl-xl signaling pathways and ROS generation. Evidence-Based
Complementary and Alternative Medicine, 2014: 1-14.
21. Llorent-martínez, E. J., Spínola, V.
and Castilho, P. C. (2017). Phenolic profiles of Lauraceae plant species
endemic to Laurisilva forest : A chemotaxonomic survey. Industrial Crops and Products, 107: 1-12.
22. Harborne, J. B. (1973). Phytochemical
methods: A guide to modern techniques of plant analysis. Chapman and Hall Ltd,
London: pp. 34-213.
23. Trease, G. E. and Evans, W. C.
(2009). Trease and Evans Pharmacognosy. Elsevier, London: pp. 196-356.
24. Laggoune, S., Brouard, I., Leon, F.,
Calliste, C. A., Duroux, J. L., Bermejo, J., Kabouche, Z. and Kabouche, A.
(2011). Lignans and an abundant flavone glycoside with free-radical
scavenging activity from the roots of the endemic species Stachys mialhesi
de Noé. Record of Natural Products, 5(3): 238-241.