Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 954 - 969

 

 

 

 

CORROSION BEHAVIOR OF LOW-CARBON STEEL AND STAINLESS STEEL 304 UNDER TWO SOIL CONDITIONS AT PANTAI MENGABANG TELIPOT, TERENGGANU, MALAYSIA

 

(Kelakuan Kakisan dan Penyusutan Bahan Logam Rendah Karbon dan Keluli Tahan Karat 304 di dalam Dua Keadaan Tanih di Pantai Mengabang Telipot, Terengganu, Malaysia)

 

Suriani Mat Jusoh1, 2, Wan Mohd Norsani Wan Nik1, 3, 4, Nor Azila Azman1, Mohammad Fakhratul Ridwan Zulkifli1,3*

 

1Faculty of Ocean Engineering Technology and Informatics

2Composite Research Group (CoReG), Faculty of Ocean Engineering Technology and Informatics

3Materials and Corrosion Research Group, Faculty of Ocean Engineering Technology and Informatics

4Industrial Centre of Excellent (ICoE)

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  fakhratulz@umt.edu.my

 

 

Received: 14 June 2020; Accepted: 11 September 2020; Published:  10 December 2020

 

 

Abstract

Corrosion damage significantly affect steel structures' performance, whose control is a crucial key for design and maintenance. In this study, two different steels' corrosion behaviour, namely as low-carbon steel (LCS) and stainless steel 304 (SS 304) strip coupons, were observed in two different soils for a maximum period of 56 days. The corrosion behaviour of buried metals in different soils was characterized by weight loss (WL) measurement, potentiodynamic polarization (PP), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The results show that the average weight loss after the observational periods of 14,28,42 and 56 days, average percentage weight loss in the LCS coupons from the sandy soil site was 0.444%, 0.831%, 2.542%, and 3.084%, respectively, representing an overall average of 6.901%. The average percentage of weight loss was 0.761%, 1.770%, 2.833%, and 5.090%, respectively, representing an overall average of 10.454% in the silt soil. Corrosion rates (CRs) for the LCS coupons from sandy soil site after 14, 28, 42, and 56 days were 0.87 mmpy, 0.80 mmpy, 1.67 mmpy and 1.54 mmpy respectively. In the silt soil, the CRs were 1.47 mmpy, 1.74 mmpy, 1.87 mmpy and 2.56 mmpy. The value of Ecorr, shifted to more negative values with increasing soil moisture content, indicating a cathodic controlled process. Moisture content is the most influential factor in metal loss, whereas pH is relatively insignificant in underground corrosion. Also, the pits area and distribution depend on the soil conditions. The corroded area of LCS was more extensive than the SS 304, where the depth of the pitting was the same across the surface.

 

Keywords:  corrosion, materials, materials degradation, materials selection, scanning electron microcopy

 

Abstrak

Kerosakan kakisan sangat mempengaruhi prestasi struktur keluli, yang kawalannya adalah aspek utama reka bentuk dan penyelenggaraan. Dalam kajian ini, kelakuan kakisan dari dua jenis keluli berbeza iaitu keluli karbon rendah (LCS) dan keluli tahan karat 304 (SS 304) kupon jalur telah dinilai di dalam dua tanah yang berlainan untuk tempoh maksimum 56 hari. Pencirian produk kakisan telah dijalankan dengan menggunakan teknik pengurangan berat (WL), pengutuban keupayaan dinamik (PP), pengukuran spektroskopi impedans elektrokimia (EIS) dan imbasan elektron mikroskopi (SEM). Keputusan menunjukkan bahawa purata berat selepas tempoh pemerhatian 14, 28, 42 dan 56 hari, purata kehilangan berat dalam kupon LCS dari tapak tanah berpasir adalah 0.444%, 0.831%, 2.542% dan 3.084 %, mewakili purata keseluruhan sebanyak 6.901%. Di dalam tanah lumpur, purata kehilangan berat adalah 0.761%, 1.770%, 2.833% dan 5.090% mewakili purata keseluruhan 10.454%. Kadar kakisan untuk kupon LCS dari tanah berpasir selepas 14,28,42 dan 56 hari adalah 0.87 mmpy, 0.80 mmpy, 1.67 mmpy dan 1.54 mmpy, masing-masing memberikan purata komposit 1.22 mmpy. Di dalam tanah lumpur, CRs ialah 1.47 mmpy, 1.74 mmpy, 1.87 mmpy dan 2.56 mewakili purata 1.91 mmpy. Nilai Ecorr, mengarah kepada lebih negatif dengan pertambahan kandungan kelembapan tanah menandakan proses kawalan katodik. Kandungan lembapan adalah faktor yang paling berpengaruh terhadap kehilangan logam, sedangkan pH secara relatif tidak ketara pada kakisan bawah tanah. Juga, kawasan lubang dan pengedaran juga bergantung kepada keadaan tanah. Kawasan berlubang pada logam LCS lebih besar berbanding SS 304 dan kedalaman lubang adalah sama.

 

Kata kunci:  kakisan, bahan, penyusutan bahan, pemilihan bahan, imbasan mikroskop elektron.

 

References

1.      Spark, A., Cole, I., Law, D. and Ward, L. (2016). The effect of peptide-based nutrients on the corrosion of carbon steel in an agar-based system. Corrosion Science, 110: 174-181.

2.      Yan, M., Sun, C., Xu, J. and Ke, W. (2015). Electrochemical behavior of API X80 steel in acidic soils from Southeast China. International Journal of Electrochemical Science, 10: 1762-1776.

3.      Wu, T., Yan, M., Zeng, D., Xu, J., Sun, C., Yu, C. and Ke, W. (2015). Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria. Journal of Materials Science & Technology, 31(4): 413-422.

4.      Qin, F., Jiang, C., Cui, X., Wang, Q., Wang, J., Huang, R. and Peng, P. D. (2018). Effect of soil moisture content on corrosion behavior of X70 steel. International Journal of Electrochemical Science, 13: 1603-1613.

5.      Esfahani, M. N., Coupland, J. and Marimuthu, S. (2014). Microstructure and mechanical properties of a laser welded low carbon–stainless steel joint. Journal of Materials Processing Technology, 214(12): 2941-2948.

6.      Mobin, M. and Aslam, R. (2018). Experimental and theoretical study on corrosion inhibition performance of environmentally benign non-ionic surfactants for mild steel in 3.5% NaCl solution. Process Safety and Environmental Protection, 114: 279-295.

7.      Zulkifli, M. F. R., Radzi, N. M., Jusoh, S. M., Saidin, J. and Nik, W. M. N. W. (2019). Potential of cabbage extract (Brassica oleracea) as anti-fouling agent in alkyd undercoat for mild steel in seawater. Malaysian Journal of Analytical Sciences, 23(3): 451-461.

8.      Anwar Ul-Hamida, Huseyin S., Abdul Qudus., Abdulrashid I. M., and Luai M. Al-Hems (2017). Corrosion study of SS304 and SS316 alloys in atmospheric, underground and seawater splash zone in the Arabian Gulf. Corrosion Engineering, Science and Technology, 52(2); 134-140.

9.      Akkouche, R., Rémazeilles, C., Jeannin, M., Barbalat, M., Sabot, R. and Refait, P. (2016). Influence of soil moisture on the corrosion processes of carbon steel in artificial soil: Active area and differential aeration cells. Electrochimica Acta, 213: 698-708.

10.   Faes, W., Lecompte, S., Van Bael, J., Salenbien, R., Bäßler, R., Bellemans, I. and De Paepe, M. (2019). Corrosion behaviour of different steel types in artificial geothermal fluids. Geothermics, 82: 182-189.

11.   Azoor, R. M., Deo, R. N., Birbilis, N. and Kodikara, J. (2019). On the optimum soil moisture for underground corrosion in different soil types. Corrosion Science, 159: 108116.

12.   Loto, R. T. and Loto, C. A. (2017). Potentiodynamic polarization behavior and pitting corrosion analysis of 2101 duplex and 301 austenitic stainless steel in sulfuric acid concentrations. Journal of Failure Analysis and Prevention, 17(4): 672-679.

13.   Hajar, H. M., Zulkifli, F., Sabri, M. G, M., Fitriadhy, A. and Nik, W. N. W. (2017). Lawsonia inermis performance as corrosion inhibitor for mild steel in seawater. International Journal of ChemTech Research, 9(8): 600-608.

14.   Hirschorn, B. D. (2010). Distributed time-constant impedance responses interpreted in terms of physically meaningful properties. Thesis University of Florida.

15.   Wasim, M., Shoaib, S., Mubarak, N. M. and Asiri, A. M. (2018). Factors influencing corrosion of metal pipes in soils. Environmental Chemistry Letters, 16(3): 861-879.

16.   Noor, E. A. and Al-Moubaraki, A. H. (2014). Influence of soil moisture content on the corrosion behavior of X60 steel in different soils. Arabian Journal for Science and Engineering, 39(7): 5421-5435.