Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 940 - 953

 

 

 

 

STABILITY AND ANTIBACTERIAL PROPERTIES OF GREEN SYNTHESIS SILVER NANOPARTICLES USING Nephelium lappaceum PEEL EXTRACT

 

(Kestabilan dan Ciri Antibakteria bagi Sintesis Hijau Nanopartikel Perak Menggunakan Ekstrak Kulit Nephelium lappaceum)

 

Nor Syazwanie Mohd Saidi1, Hanis Mohd Yusoff1,2*, Irshad Ul Haq Bhat1,2, Suganthi Appalasamy3,4, Alia Diyana Mohamed Hassim3, Farhanini Yusoff1, Asnuzilawati Asari1,2, Nurul Huda Abdul Wahab1,2

 

1Faculty of Science and Marine Environment, Faculty of Science and Marine Environment

 2Advanced Nano Materials (ANoMa) Research Group, Faculty of Science and Marine Environment

 Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Institute of Food Security and sustainable Agriculture

4Faculty of Earth Science

Universiti Malaysia Kelantan, 17600 Jeli Campus, Kelantan, Malaysia

 

*Corresponding author:  hanismy@umt.edu.my

 

 

Received: 10 August 2020; Accepted: 9 October 2020; Published:  10 December 2020

 

 

Abstract

Silver nanoparticles (AgNPs) are known for its easy production with wide range of applications. The production can involve chemical, physical, biological and photochemical methods. For production of AgNPs using biological method, the synthesis normally involves plants, bacteria or other potential reducing agents that can control the size of AgNPs. In this study, Nephelium lappaceum or also known as rambutan peel was used as a reducing agent. Nephelium lappaceum extract was added to AgNO3 (1 mM) solution and stirred for 1 hour. Three sets of synthesis were carried out to see the reproducibility and stability of the AgNPs. The solution obtained was analyzed by using Fourier transform-infrared spectroscopy (FTIR), UV-Vis spectrophotometer and scanning electron microscope (SEM). The stability of the obtained AgNPs was observed and compared with AgNPs synthesized by using the chemical method. FTIR spectra showed O-H, C-H, C=O and C=C stretching at 3361 cm-1, 2090 cm-1, 1637 cm-1 and 1367 cm-1, respectively. The wavelength of UV-Vis obtained for the 3 sets of green synthesis is at 452 nm. The appearance of the peak around 452 nm due to the surface plasmon resonance band confirmed the formation of AgNPs. SEM images showed a mixture of spherical shapes that were agglomerated with size range of about 40 to 200 nm. The antibacterial study performed on AgNPs produced from Nephelium lappaceum peel extract was found to exhibited antibacterial activity on both Gram-positive and Gram-negative bacteria.

 

Keywords:  green synthesis, reducing agent, green AgNPs, antibacterial, rambutan peel

 

Abstrak

Nanopartikel perak (AgNPs) dikenali dengan penghasilannya yang mudah dan aplikasi yang meluas. Kaedah penghasilan tersebut merangkumi kimia, fizikal, biologi dan fotokimia. Bagi penghasilan AgNPs menggunakan kaedah biologi, sintesis ini kebiasaannya melibatkan tumbuhan, bakteria atau agen penurunan lain yang berpotensi mengawal saiz AgNPs. Dalam kajian ini, Nephelium lappaceum atau dikenali juga sebagai kulit rambutan telah digunakan sebagai agen penurunan. Ekstrak Nephelium lappaceum telah ditambah kepada larutan AgNO3 (1 mM) dan dikacau selama 1 jam. Tiga set sintesis telah dijalankan untuk melihat kebolehterbitan dan kestabilan AgNPs. Larutan yang diperolehi telah dianalisa menggunakan spektrometer infra merah transformasi Fourier (FTIR), spektrofotometer tampak UV (UV-Vis) dan mikroskop imbasan elektron (SEM). Kestabilan larutan AgNPs yang diperolehi telah dikaji dan dibandingkan dengan AgNPs yang disintesis menggunakan teknik kimia. Spektra FTIR telah menunjukkan kewujudan regangan O-H, C-H, C=O dan C=C masing-masing adalah pada 3361 cm-1, 2090 cm-1, 1637 cm-1 dan 1367 cm-1. Panjang gelombang UV-Vis bagi ketiga-tiga set adalah pada 452 nm. Kewujudan puncak sekitar 452 nm adalah disebabkan oleh jalur resonansi plasmon permukaan yang membuktikan pembentukan AgNPs. Imej SEM menunjukkan campuran bentuk sfera dan aglomerasi dengan anggaran saiz sekitar 40 hingga 200 nm. Kajian antibakteria telah dilakukan terhadap AgNPs yang dihasilkan daripada ekstrak kulit Nephelium lappaceum didapati menunjukkan aktiviti antibakteria pada kedua-dua bakteria Gram-positif dan Gram-negatif.

 

Kata kunci:  sintesis hijau, agen penurun, AgNPs hijau, antibakteria, kulit rambutan

 

References

1.      Buzea, C., Pacheco, I. I. and Robbie, K. (2007). Nanomaterials and nanoparticles. Biointerphases, 2(4): MR17-71.

2.      Solomon, S. D., Mulfinger, L., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A. and Boritz, C. (2007). Synthesis and study of silver nanoparticles. Journal of Chemical Education, 84(2): 322-325.

3.      Yusoff, H. M., Hazwani, N. U., Hassan, N. and Izwani, F. (2015). Comparison of sol gel and dehydration magnesium oxide (MgO) as a catalyst in Michael addition reaction. International Journal of Integrated Engineering, 7(3):43-50.

4.      Yusoff, H. M., Idris, N. H., Hipul, N. F., Yusoff, N. F. M., Izham, N. Z. M. and Bhat, I. U. H. (2020). Green synthesis of zinc oxide nanoaparticles using black tea extract and its potential as anode material in sodium ion batteries. Malaysian Journal of Chemistry, 22(2): 43-51.

5.      Mazli, S. R. A., Yusoff, H. M. and Idris N. H. (2020). Synthesis of zinc oxide nanoparticles by using aloe vera leaf extract as potential anode material in lithium ion battery. Universiti Malaysia Terengganu Journal of Undergraduate Research, 2(2): 1-8.

6.      Yusoff, H. M., Rafit, F. A., Mohamad, F. I., Hassan, N. and Daud, A. I. (2017). The effect of calcination temperatures in the synthesis of nanocrystalline magnesium oxide via sol-gel technique. Applied Mechanics and Materials, 865: 36-42.

7.      Lestari, P., Pratiwi I. and Juliani A. (2018). Green synthesis of silver nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial activity against Salmonella parathypi A. MATEC Web of Conferences, 154: 1-4.

8.      Maribel, G., Guzmán, J. D. and Stephan, G. (2009). Synthesis of silver nanoparticles by chemical reduction and their antibacterial activity. International Journal of Chemical and Biomolecular Engineering, 2(3): 104-111.

9.      Liu, H., Wang, D., Song, Z. and Shang S. (2011). Preparation of silver nanoparticles and the application in electrochemical detection of DNA hybridization. Cellulose, 18: 67-74.

10.   Gudikandula, K. and Maringanti, S., C. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11(9): 714-721. 

11.   Yusoff, H. M.,   Rzeznicka, I. I.,  Hoshi, H.,  Kajimoto, S.,  Horimoto, N. N.,  Sogawa, K.,  &  Fukumura, H. (2013). Excitation energy migration in yellow fluorescent protein (Citrine) layers adsorbed on modified gold surfaces. Applied Surface Science, 280: 776-782.

12.   Zhu, X. and Gao, T. (2019). Nano-inspired biosensors for protein assay with clinical applications. Elsevier, Amsterdam: pp. 237-264.

13.   Ahmed, S., Ahmad, M., Swami, B. L. and Ikram S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.  Journal of Advanced Research, 7: 17-28.

14.   Awwad, A. M., Salem, N. M. and Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4(29): 1–6.

15.   Naganathan, S. and Thirunavukkarasu, S. (2017). green way genesis of silver nanoparticles using multiple fuit peels waste and its antimicrobial, antioxidant and anti-tumor cell line studies. 2nd International Conference on Mining, Material and Metallurgical Engineering, 191: pp. 1-7.

16.   Mousa A. A., Moosa, A. A. and Allawi, M. (2015). Green synthesis of silver nanoparticles using spent tea leaves extract with atomic force microscopy. International Journal of Current Engineering and Technology, 5(5): 3233-3241.   

17.   Loo, Y. Y., Chieng, B. W., Nishibuchi, M. and Radu, S. (2012). Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinesis. International Journal of Nanomedicine, 7: 4263-4267.

18.   Narayanamma, A. (2016). Natural synthesis of silver nanoparticles by banana peel extract and as antibacterial agent. IOSR Journal of Polymer and Textile Engineering, 3(1): 17-25.

19.   Badi’ah, H. I., Seedeh, F., Supriyanto, G. and Zaidan A. H. (2019). Synthesis of silver nanoparticles and the development in analysis method.  IOP Conference Series: Earth and Environmental Science, 217: 1-8.

20.   Kumar, B., Smita, K., Cymbal, L. and Angulo Y. (2020). Photosynthesis of silver nanoparticles using andean cabbage: Structural characterization and its application. Materials Today: Proceedings, 21: 2079-2086.

21.   Singh, A., Jain, D., Upadhyay, M. K., Khandelwal, N. and Verma, H. N. (2010). Green synthesis of silver nanoparticles using agremone mexicana leaf extract and evaluation of their antimicrobial activities.  Digest Journal of Nanomaterials and Biostructures, 5(2): 483-489.

22.   Babu, S., Claville, M. O. and Ghebreyessus, K. (2015). Rapid synthesis of highly stable silver nanoparticles and its application for colourimetric sensing of cysteine. Journal of Experimental Nanoscience, 10(16): 1242–1255.

23.   Ashok, K., Nethaji, R., Thooyavan, G. and Mullai N. K. (2015). Phytochemical profiling, antioxidant and antimicrobial activity of methanol extract in rambutan fruit (Nephelium lappaceum) epicarp against the human pathogens. International Journal of Current Innovation Research, 1(9): 201-206.

24.   Reenaa, M. and Menon, A. S. (2017). Synthesis of silver nanoparticles from different citrus fruit peel extract and a comparative analysis on its antibacterial activity. International Journal of Current Microbiology and Applied Sciences, 6(7): 2358–2365.

25.   Kavulicova, J., Mrazikova, A., Velgosova, O., Ivanova, D. and Kubovcikova, M. (2018). Stability of synthesized silver nanoparticles in citrate and mixed gelatin/citrate solution. Acta Polytechnica, 58(2): 104-108.

26.   Peiris, M. M. K., Fernando, S. S. N., Jayaweera, P. M., Arachchi, N. D. H. and Guansekara, T. D. C. P. (2018). Comparison of antimicrobial properties of silver nanoparticles synthesized from selected bacteria. Indian Journal Microbiology, 58(3): 301-211.

27.   Maruthai, K., Vallayyachari, K., Ravibalan, T., Phillip, A. A., Samrot, A. V. and Muthuraj, M. (2017). Antibacterial activity of the silver nanoparticles against Escherichia coli and Enterobacter sp. Progress in Bioscience and Bioengineering, 1(1): 29-35.