Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 940 - 953
STABILITY AND ANTIBACTERIAL PROPERTIES OF GREEN SYNTHESIS SILVER
NANOPARTICLES USING Nephelium lappaceum PEEL EXTRACT
(Kestabilan dan Ciri Antibakteria bagi Sintesis
Hijau Nanopartikel Perak Menggunakan Ekstrak Kulit Nephelium lappaceum)
Nor
Syazwanie Mohd Saidi1, Hanis Mohd Yusoff1,2*, Irshad Ul
Haq Bhat1,2, Suganthi Appalasamy3,4, Alia Diyana
Mohamed Hassim3, Farhanini Yusoff1, Asnuzilawati Asari1,2,
Nurul Huda Abdul Wahab1,2
1Faculty of Science and
Marine Environment, Faculty of Science and Marine Environment
2Advanced
Nano Materials (ANoMa) Research Group, Faculty of Science and Marine
Environment
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
3Institute of Food
Security and sustainable Agriculture
4Faculty of Earth
Science
Universiti Malaysia Kelantan, 17600 Jeli
Campus, Kelantan, Malaysia
*Corresponding author: hanismy@umt.edu.my
Received: 10 August 2020;
Accepted: 9 October 2020; Published: 10
December 2020
Abstract
Silver nanoparticles (AgNPs) are known for its
easy production with wide range of applications. The production can involve
chemical, physical, biological and photochemical methods. For production of
AgNPs using biological method, the synthesis normally involves plants, bacteria
or other potential reducing agents that can control the size of AgNPs. In this
study, Nephelium lappaceum or also known as rambutan peel was used as a
reducing agent. Nephelium lappaceum extract was added to AgNO3
(1 mM) solution and stirred for 1 hour. Three sets of synthesis were carried
out to see the reproducibility and stability of the AgNPs. The solution
obtained was analyzed by using Fourier transform-infrared spectroscopy (FTIR),
UV-Vis spectrophotometer and scanning electron microscope (SEM). The stability
of the obtained AgNPs was observed and compared with AgNPs synthesized by using
the chemical method. FTIR spectra showed O-H, C-H, C=O and C=C stretching at
3361 cm-1, 2090 cm-1, 1637 cm-1 and 1367 cm-1,
respectively. The wavelength of UV-Vis obtained for the 3 sets of green
synthesis is at 452 nm. The appearance of the peak around 452 nm due to the
surface plasmon resonance band confirmed the formation of AgNPs. SEM images
showed a mixture of spherical shapes that were agglomerated with size range of
about 40 to 200 nm. The antibacterial study performed on AgNPs produced from Nephelium
lappaceum peel extract was found to exhibited antibacterial activity on
both Gram-positive and Gram-negative bacteria.
Keywords: green synthesis, reducing agent, green AgNPs,
antibacterial, rambutan peel
Abstrak
Nanopartikel perak (AgNPs)
dikenali dengan penghasilannya yang mudah dan aplikasi yang meluas. Kaedah
penghasilan tersebut merangkumi kimia, fizikal, biologi dan fotokimia. Bagi
penghasilan AgNPs menggunakan kaedah biologi, sintesis ini kebiasaannya melibatkan
tumbuhan, bakteria atau agen penurunan lain yang berpotensi mengawal saiz
AgNPs. Dalam kajian ini, Nephelium lappaceum atau dikenali juga sebagai
kulit rambutan telah digunakan sebagai agen penurunan. Ekstrak Nephelium
lappaceum telah ditambah kepada larutan AgNO3 (1 mM) dan dikacau
selama 1 jam. Tiga set sintesis telah dijalankan untuk melihat kebolehterbitan
dan kestabilan AgNPs. Larutan yang diperolehi telah dianalisa menggunakan
spektrometer infra merah transformasi Fourier (FTIR), spektrofotometer tampak
UV (UV-Vis) dan mikroskop imbasan elektron (SEM). Kestabilan larutan AgNPs yang
diperolehi telah dikaji dan dibandingkan dengan AgNPs yang disintesis
menggunakan teknik kimia. Spektra FTIR telah menunjukkan kewujudan regangan
O-H, C-H, C=O dan C=C masing-masing adalah pada 3361 cm-1, 2090 cm-1,
1637 cm-1 dan 1367 cm-1. Panjang gelombang UV-Vis bagi
ketiga-tiga set adalah pada 452 nm. Kewujudan puncak sekitar 452 nm adalah
disebabkan oleh jalur resonansi plasmon permukaan yang membuktikan pembentukan
AgNPs. Imej SEM menunjukkan campuran bentuk sfera dan aglomerasi dengan
anggaran saiz sekitar 40 hingga 200 nm. Kajian antibakteria telah dilakukan
terhadap AgNPs yang dihasilkan daripada ekstrak kulit Nephelium lappaceum didapati menunjukkan
aktiviti antibakteria pada kedua-dua bakteria Gram-positif dan Gram-negatif.
Kata kunci: sintesis hijau, agen
penurun, AgNPs hijau, antibakteria, kulit rambutan
References
1.
Buzea, C., Pacheco, I. I.
and Robbie, K. (2007). Nanomaterials and nanoparticles. Biointerphases, 2(4): MR17-71.
2.
Solomon, S. D.,
Mulfinger, L., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A. and
Boritz, C. (2007). Synthesis and study of silver nanoparticles. Journal of Chemical Education, 84(2): 322-325.
3.
Yusoff, H. M., Hazwani,
N. U., Hassan, N. and Izwani, F. (2015). Comparison of sol gel and dehydration
magnesium oxide (MgO) as a catalyst in Michael addition reaction. International
Journal of Integrated Engineering, 7(3):43-50.
4.
Yusoff, H. M., Idris, N.
H., Hipul, N. F., Yusoff, N. F. M., Izham, N. Z. M. and Bhat, I. U. H. (2020).
Green synthesis of zinc oxide nanoaparticles using black tea extract and its
potential as anode material in sodium ion batteries. Malaysian Journal of
Chemistry, 22(2): 43-51.
5.
Mazli, S. R. A., Yusoff,
H. M. and Idris N. H. (2020). Synthesis of zinc oxide nanoparticles by using
aloe vera leaf extract as potential anode material in lithium ion battery. Universiti
Malaysia Terengganu Journal of Undergraduate Research, 2(2): 1-8.
6.
Yusoff, H. M., Rafit, F.
A., Mohamad, F. I., Hassan, N. and Daud, A. I. (2017). The effect of
calcination temperatures in the synthesis of nanocrystalline magnesium oxide
via sol-gel technique. Applied Mechanics and Materials, 865: 36-42.
7.
Lestari, P., Pratiwi I.
and Juliani A. (2018). Green synthesis of silver nanoparticles using rambutan (Nephelium
lappaceum L.) peel extract and its antibacterial activity against Salmonella
parathypi A. MATEC Web of Conferences,
154: 1-4.
8.
Maribel,
G., Guzmán, J. D. and Stephan, G. (2009).
Synthesis of silver nanoparticles by chemical reduction and their antibacterial
activity. International Journal of
Chemical and Biomolecular Engineering, 2(3): 104-111.
9.
Liu, H., Wang, D., Song,
Z. and Shang S. (2011). Preparation of silver nanoparticles and the application
in electrochemical detection of DNA hybridization. Cellulose, 18: 67-74.
10.
(2016). Synthesis of silver nanoparticles by chemical and biological
methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11(9): 714-721.
11.
Yusoff, H. M., Rzeznicka,
I. I., Hoshi, H., Kajimoto, S., Horimoto, N. N., Sogawa, K., & Fukumura,
H. (2013). Excitation energy migration in yellow fluorescent protein (Citrine)
layers adsorbed on modified gold surfaces. Applied Surface Science, 280:
776-782.
12.
Zhu, X. and Gao, T.
(2019). Nano-inspired biosensors for protein assay with clinical applications.
Elsevier, Amsterdam: pp. 237-264.
13.
Ahmed, S., Ahmad, M.,
Swami, B. L. and Ikram S. (2016). A review on plants extract mediated synthesis
of silver nanoparticles for antimicrobial applications: A green expertise. Journal
of Advanced Research, 7:
17-28.
14.
Awwad, A. M., Salem, N.
M. and Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using
carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4(29): 1–6.
15.
Naganathan, S. and Thirunavukkarasu, S. (2017). green way
genesis of silver nanoparticles using multiple fuit peels waste and its
antimicrobial, antioxidant and anti-tumor cell line studies. 2nd
International Conference on Mining, Material and Metallurgical Engineering, 191: pp.
1-7.
16.
Mousa A.
A., Moosa, A. A. and Allawi, M. (2015). Green synthesis of silver nanoparticles
using spent tea leaves extract with atomic force microscopy. International Journal
of Current Engineering and Technology, 5(5): 3233-3241.
17.
Loo, Y. Y., Chieng, B.
W., Nishibuchi, M. and Radu, S. (2012). Synthesis of silver nanoparticles by
using tea leaf extract from Camellia sinesis. International Journal of Nanomedicine, 7: 4263-4267.
18.
Narayanamma, A. (2016).
Natural synthesis of silver nanoparticles by banana peel extract and as
antibacterial agent. IOSR Journal
of Polymer and Textile Engineering, 3(1): 17-25.
19.
Badi’ah, H. I., Seedeh,
F., Supriyanto, G. and Zaidan A. H. (2019). Synthesis of silver nanoparticles
and the development in analysis method. IOP
Conference Series: Earth and Environmental Science, 217: 1-8.
20.
Kumar, B., Smita, K.,
Cymbal, L. and Angulo Y. (2020). Photosynthesis of silver nanoparticles using
andean cabbage: Structural characterization and its application. Materials Today: Proceedings, 21: 2079-2086.
21.
Singh, A., Jain, D.,
Upadhyay, M. K., Khandelwal, N. and Verma, H. N. (2010). Green synthesis of
silver nanoparticles using agremone mexicana leaf extract and evaluation of
their antimicrobial activities. Digest Journal of Nanomaterials and
Biostructures, 5(2):
483-489.
22.
Babu, S., Claville, M. O.
and Ghebreyessus, K. (2015). Rapid synthesis of highly stable silver
nanoparticles and its application for colourimetric sensing of cysteine. Journal of Experimental Nanoscience, 10(16): 1242–1255.
23.
Ashok, K., Nethaji, R.,
Thooyavan, G. and Mullai N. K. (2015). Phytochemical profiling, antioxidant and
antimicrobial activity of methanol extract in rambutan fruit (Nephelium
lappaceum) epicarp against the human pathogens. International Journal of
Current Innovation Research, 1(9): 201-206.
24.
Reenaa, M. and Menon, A.
S. (2017). Synthesis of silver nanoparticles from different citrus fruit peel
extract and a comparative analysis on its antibacterial activity. International Journal of Current
Microbiology and Applied Sciences, 6(7):
2358–2365.
25.
Kavulicova, J.,
Mrazikova, A., Velgosova, O., Ivanova, D. and Kubovcikova, M. (2018). Stability
of synthesized silver nanoparticles in citrate and mixed gelatin/citrate
solution. Acta Polytechnica, 58(2): 104-108.
26.
Peiris, M. M. K.,
Fernando, S. S. N., Jayaweera, P. M., Arachchi, N. D. H. and Guansekara, T. D.
C. P. (2018). Comparison of antimicrobial properties of silver nanoparticles
synthesized from selected bacteria. Indian Journal Microbiology, 58(3):
301-211.
27.
Maruthai, K.,
Vallayyachari, K., Ravibalan, T., Phillip, A. A., Samrot, A. V. and Muthuraj,
M. (2017). Antibacterial activity of the silver nanoparticles against Escherichia
coli and Enterobacter
sp. Progress in Bioscience and Bioengineering, 1(1): 29-35.