Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 918 - 926

 

 

 

 

A USE OF AN EVERYDAY LIFE CAMERA WITH IMAGE PROCESSING AS ALTERNATIVE DETECTION FOR A FLAME PHOTOMETER

 

(Penggunaan Kamera Harian Dengan Pemprosesan Imej Sebagai Alternatif Pengesanan Fotometer Nyalaan)

 

Narong Kotchabhakdi1,2 and Kate Grudpan1,2*

 

1Department of Chemistry and Graduate programs in Chemistry, Faculty of Science

2Center of Excellence for Innovation in Analytical Science and Technology

Chiang Mai University, Chiang Mai, 50200, Thailand

 

*Corresponding author:  kgrudpan@gmail.com

 

 

Received: 27 August 2020; Accepted: 26 October 2020; Published:  10 December 2020

 

 

Abstract

As alternative detector, everyday life cameras: Digital Single Lens Reflect (DSLR) and smartphone, are proposed for a Flame Atomic Emission Spectrometer (FAES) for the assays of Na, K, Ca, Ba, and Li. Image processing with Region of Interest (ROI) approach for DSLR employs imageJ while for smartphone, various available applications (Color Grab, Linear Regression, and Calculator) are used. It was found that linear correlations for calibration graphs could be obtained by a particular ratio of Red, Green, Blue (R, G, B) color intensity and concentration for each of the above metal ions in the range of 0.2-1.0 mg L-1. Applications to real samples were demonstrated.

 

Keywords:  flame photometry, digital single lens reflect camera, smartphone, image processing

 

Abstrak

Kamera harian: Refleksi Lensa Digital Tunggal (DLSR) dan telefon pintar, telah dicadang sebagai pengesan alternatif bagi spektrometer nyalaan pancaran atom (FAES) untuk analisis terhadap Na, K, Ca, Ba, dan Li. Pemprosesan imej dengan pendekatan Kawasan terpilih (ROI) pada imageJ DSLR manakala bagi telefon pintar, pelbagai aplikasi (Grab warna, regresi linear dan kalkulator) telah digunakan. Hasil mendapati korelasi linear diperolehi bagi graf kalibrasi berdasarkan nisbah keamatan warna merah, hijau, biru (R, G, B) dan kepekatan bagi setiap logam yang dinyatakan pada julat 0.2-1.0 mg L-1. Aplikasi terhadap sampel sebenar telah berjaya dilakukan.

 

Kata kunci:  fotometri nyalaan, kamera refleksi lensa digital tunggal, telefon pintar, pemprosesan imej

 

References

1.      Almeida, M. I. G. S., Segundo, M. A., Lima, J. L. F. C. and Rangel, A. O. S. S. (2008). Direct introduction of slurry samples in multi-syringe flow injection analysis: Determination of potassium in plant samples. Analytical Sciences, 24: 601-606.

2.      Rangel, A. O. S. S., and Toth, I. V. (1996). Flow injection sequential speciation of free and total potassium in fortified wines. Analytical Sciences, 12: 887-891.

3.      Lima, J. L. F. C. A., Rangel, O. S. S. and Souto, M. R. S. (1996). Simultaneous determination of potassium and sodium in vegetables by flame emission spectrometry using a flow-injection system with two dialysis units. Analytical Sciences, 12: 81-85.

4.      Barros, A. I., Oliveira, A. P. M., Magalhaes, R. L., and Villa, R. D. (2012). Determination of sodium and potassium in biodiesel by flame atomic emission spectrometry. Fuel, 93: 381-384.

5.      Castanheira, I., Figueiredo, C., Andre, C., Coelho, I., Silva, A. T., Santiago, S., Fontes, T., Mota, C., and Calhau, M. A. (2009). Sampling of bread for added sodium as determined by flame photometry. Food Chemistry, 113: 621-628.

6.      Ferreira, I. M. P. L. V. O., Lima, J. L. F. C. and Rangel, A.O. S. S. (1994). Flow injection sequential determination of chloride by potentiometry and sodium by flame emission spectrometry in instant soups. Analytical Sciences, 10: 801-805.

7.      Wen, G. H., (2002). Spectrophotometric determination of trace amounts of calcium using the calcium complex with alizarin. Journal of the Brazilian Chemical Society, 13:78-81.

8.      Nakashima, K., Muraki K., Nakatsuji, S. and Akiyama, S. (1989). Coloration reaction of a crowned 2,4-dinitrophenylazophenol-barium(II) complex with amines and its application to flow injection spectrophotometry. Analyst, 114: 501-504.

9.      Wu, Y. P. and Pacey, G. E. (1984). Spectrophotometric determination of lithium ion with the chromogenic crown ether, 2”,4”-dinitro-6”-trifluoromethylphenyl-4-0-aminobenzo-14-crown-4. Analytica Chimica Acta, 162: 285-291.

10.   Nazarenko, A. Y. (2004). Educational multiwavelength atomic emission spectrometer. Spectrocscopy. Letters, 37(3): 235-243.

11.   Bright, R. M., Momoh, P. O., Bozeman, A. D., Seney, C. S. and Sinclair, K. V. (2005). Development of a multiple-element flame emission spectrometer using CCD detection. Journal of Chemical Education, 82(12): 1826-1830.

12.   Debus, B., Kirsanov, D., Yaroshenkoab, I., and Leginab, A., (2017). A simple design atomic emission spectrometer combined with multivariate image analysis for the determination of sodium content in urine. Analytical Methods, 9: 3237-3243.

13.   Lyra, W. S., Santos, V. B.,  Dionízio, A. G. G., Martins, V. L., Almeida, L.F., Gaião, E. N. P.,  Dias Diniz, E. H. G., Silva, C. and  Araújo, M. C. U., (2009). Digital image-based flame emission spectrometry.  Talanta, 77: 1584-1589.

14.   Lyra, W. S., Sanches, F. A. C., Cunha, F. A. S., Diniz, P. H. G. D., Lemos, S.G., Silva, E. C. and Araujo, M.C.U. (2011). Indirect determination of sodium 224 diclofenac, sodium dipyrone and calcium gluconate in injection drugs using digital image-based (webcam) flame emission. Analytical Methods, 3: 1975-1980.

15.   Moraes, E. P., Silva, N. S. A., Morais, C. L. M., Neves, L. S. and Lima, K. M. G. J. (2014). Low-cost method for quantifying sodium in coconut water and seawater for the undergraduate analytical chemistry laboratory: Flame test, a mobile phone camera, and image processing. Journal of Chemical Education, 91(11): 1958-1960.

16.   Christian, G. D., Dasgupta, P. K. and Schug, K. A. (2014). Analytical Chemistry. Wiley, New York: pp. 84-105.