Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 918 - 926
A USE OF AN EVERYDAY LIFE CAMERA WITH
IMAGE PROCESSING AS ALTERNATIVE DETECTION FOR A FLAME PHOTOMETER
(Penggunaan Kamera Harian Dengan Pemprosesan Imej
Sebagai Alternatif Pengesanan Fotometer Nyalaan)
Narong
Kotchabhakdi1,2 and Kate Grudpan1,2*
1Department
of Chemistry and Graduate programs in Chemistry, Faculty of Science
2Center of Excellence for Innovation in
Analytical Science and Technology
Chiang
Mai University, Chiang Mai, 50200, Thailand
*Corresponding author: kgrudpan@gmail.com
Received: 27 August 2020;
Accepted: 26 October 2020; Published: 10
December 2020
Abstract
As alternative
detector, everyday life cameras: Digital Single Lens Reflect (DSLR) and
smartphone, are proposed for a Flame Atomic Emission Spectrometer (FAES) for
the assays of Na, K, Ca, Ba, and Li. Image processing with
Region of Interest (ROI) approach for DSLR employs imageJ while for smartphone,
various available applications (Color Grab, Linear Regression, and Calculator)
are used. It was found that linear correlations for calibration graphs could be
obtained by a particular ratio of Red, Green, Blue (R, G, B) color intensity
and concentration for each of the above metal ions in the range of 0.2-1.0 mg L-1.
Applications to real samples were
demonstrated.
Keywords: flame photometry, digital single lens reflect
camera, smartphone, image processing
Abstrak
Kamera harian: Refleksi Lensa Digital Tunggal (DLSR) dan
telefon pintar, telah dicadang sebagai pengesan alternatif bagi spektrometer
nyalaan pancaran atom (FAES) untuk analisis terhadap Na, K, Ca, Ba, dan Li. Pemprosesan imej dengan pendekatan Kawasan terpilih (ROI) pada imageJ DSLR
manakala bagi telefon pintar, pelbagai aplikasi (Grab warna, regresi linear dan
kalkulator) telah digunakan. Hasil mendapati korelasi linear
diperolehi bagi graf kalibrasi berdasarkan nisbah keamatan warna merah, hijau,
biru (R, G, B) dan kepekatan bagi setiap logam yang dinyatakan pada julat
0.2-1.0 mg L-1.
Aplikasi terhadap sampel sebenar telah berjaya dilakukan.
Kata kunci:
fotometri nyalaan, kamera refleksi lensa digital tunggal, telefon pintar,
pemprosesan imej
References
1. Almeida, M. I. G. S., Segundo, M. A., Lima, J.
L. F. C. and Rangel, A. O. S. S. (2008). Direct introduction of slurry samples
in multi-syringe flow injection analysis: Determination of potassium in plant
samples. Analytical Sciences, 24:
601-606.
2. Rangel, A. O. S. S., and Toth, I. V. (1996).
Flow injection sequential speciation of free and total potassium in fortified
wines. Analytical Sciences,
12: 887-891.
3. Lima, J. L. F. C. A., Rangel, O. S. S. and
Souto, M. R. S. (1996). Simultaneous determination of potassium and sodium in
vegetables by flame emission spectrometry using a flow-injection system with
two dialysis units. Analytical Sciences,
12: 81-85.
4. Barros, A. I., Oliveira, A. P. M., Magalhaes,
R. L., and Villa, R. D. (2012). Determination of sodium and potassium in
biodiesel by flame atomic emission spectrometry. Fuel, 93: 381-384.
5. Castanheira, I., Figueiredo, C., Andre, C.,
Coelho, I., Silva, A. T., Santiago, S., Fontes, T., Mota, C., and Calhau, M. A.
(2009). Sampling of
bread for added sodium as determined by flame photometry. Food Chemistry,
113: 621-628.
6. Ferreira, I. M. P. L. V. O., Lima, J. L. F. C.
and Rangel, A.O. S. S. (1994). Flow injection sequential determination of
chloride by potentiometry and sodium by flame emission spectrometry in instant soups.
Analytical Sciences, 10: 801-805.
7. Wen, G. H., (2002). Spectrophotometric
determination of trace amounts of calcium using the calcium complex with
alizarin. Journal of the Brazilian Chemical Society, 13:78-81.
8. Nakashima, K., Muraki K., Nakatsuji, S. and
Akiyama, S. (1989). Coloration reaction of a crowned
2,4-dinitrophenylazophenol-barium(II) complex with amines and its application
to flow injection spectrophotometry. Analyst, 114: 501-504.
9. Wu, Y. P. and Pacey, G. E. (1984).
Spectrophotometric determination of lithium ion with the chromogenic crown
ether, 2”,4”-dinitro-6”-trifluoromethylphenyl-4-0-aminobenzo-14-crown-4. Analytica
Chimica Acta, 162: 285-291.
10. Nazarenko, A. Y. (2004). Educational
multiwavelength atomic emission spectrometer. Spectrocscopy. Letters, 37(3): 235-243.
11. Bright, R. M., Momoh, P. O., Bozeman, A. D.,
Seney, C. S. and Sinclair, K. V. (2005). Development of a
multiple-element flame emission spectrometer using CCD detection. Journal of
Chemical Education,
82(12): 1826-1830.
12. Debus, B., Kirsanov, D., Yaroshenkoab, I., and
Leginab, A., (2017). A simple design atomic emission spectrometer combined
with multivariate image analysis for the determination of sodium content in
urine. Analytical
Methods, 9: 3237-3243.
13. Lyra, W. S., Santos, V. B., Dionízio, A. G. G., Martins, V. L., Almeida,
L.F., Gaião, E. N. P., Dias Diniz, E. H.
G., Silva, C. and Araújo, M. C. U.,
(2009). Digital image-based flame emission spectrometry. Talanta, 77: 1584-1589.
14. Lyra, W. S., Sanches, F. A. C., Cunha, F. A.
S., Diniz, P. H. G. D., Lemos, S.G., Silva, E. C. and Araujo, M.C.U. (2011). Indirect determination
of sodium 224 diclofenac, sodium dipyrone and calcium gluconate in injection
drugs using digital image-based (webcam) flame emission. Analytical Methods, 3: 1975-1980.
15. Moraes, E. P., Silva, N. S. A., Morais, C. L.
M., Neves, L. S. and Lima, K. M. G. J. (2014). Low-cost method for quantifying
sodium in coconut water and seawater for the undergraduate analytical chemistry
laboratory: Flame test, a mobile phone camera, and image processing. Journal
of Chemical Education, 91(11): 1958-1960.
16. Christian, G.
D., Dasgupta, P. K. and Schug, K. A. (2014). Analytical Chemistry. Wiley, New
York: pp. 84-105.