Malaysian Journal of Analytical Sciences Vol 24 No 5 (2020): 810 - 819

 

 

 

 

INFLUENCE OF HYDROXYMETHYLATED LIGNIN ON MECHANICAL PROPERTIES AND PAYNE EFFECT OF NR/BR COMPOUNDS

 

(Kesan Lignin Hidroksimetilasi Terhadap Sifat Mekanik dan Kesan Payne dalam Sebatian Campuran NR/BR)

 

Nor Anizah Mohamad Aini1, Nadras Othman1*, M. Hazwan Hussin2, Kannika Sahakaro3, Nabil Hayeemasae3

 

1School of Materials and Mineral Resources Engineering, Engineering Campus,

Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

2School of Chemical Sciences,

Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

3Department of Rubber Technology and Polymer Science, Faculty of Science and Technology,

Prince of Songkla University, Pattani Campus, Pattani, 94000 Thailand

 

*Corresponding author:  srnadras@usm.my

 

 

Received: 13 November 2019; Accepted: 3 September 2020; Published:  12 October 2020

 

 

Abstract

This work investigates the correlation between hydroxymethylated lignin and its performance in natural rubber (NR)/ butadiene rubber (BR) blend compounds, focusing on Payne effect and mechanical properties. Two types of lignin from kenaf biomass, organosolv lignin (OL) and soda lignin (SL) are modified by using hydroxymethylation modification process and named as hydroxymethylated organosolv lignin (HMOL) and hydroxymethylated soda lignin (HMSL). Every structural characteristic of lignin’s is characterized using Fourier Transform Infrared (FTIR). Then, the modified and unmodified lignin’s are utilized as a filler in NR/BR blends by conventional approach method viz., dry-mixing. Payne effect by rubber process analyzer (RPA) and mechanical properties (tensile properties and hardness) of lignin–filled NR/BR blends are investigated in both masterbatches and vulcanized compounds respectively. Based on the results obtained, it is revealed that alterations in the structural characteristics of hydroxymethylated lignin influence its filler-filler interaction and reinforcement capability. Therefore, a significant improvement has been observed in mechanical properties especially at low loading up to 10 phr. Comparing between two modified lignin, HMSL contributes higher enhancement than HMOL in rubber composites which increase the tensile strength from 15.78 to 17.20 MPa, modulus at 100% strain (1.09 to 1.93 MPa), modulus at 300% strain (3.22 to 7.06 MPa) and hardness (52 to 61.5 Shore A). In conclusion, the inclusion of modified lignin to rubber compounds improves the rubber compounds performance.

 

Keywords:  lignin, hydroxymethylation, bio-filler, structural characteristic, Payne effect

 

Abstrak

Kajian ini menyiasat korelasi antara lignin hidroksimetilasi dan prestasinya dalam sebatian campuran getah asli (NR)/ butadiena getah (BR), memberi tumpuan kepada kesan Payne dan sifat mekanik. Dua jenis lignin daripada tumbuhan kenaf, organosolv lignin (OL) dan soda lignin (SL) diubahsuai menggunakan kaedah pengubahsuaian hidroksimetilasi dan dinamakan sebagai organosolv lignin hidroksimetilat (HMOL) dan soda lignin hidroksimetilat (HMSL). Ciri-ciri struktur lignin dicirikan menggunakan spektroskopi inframerah transformasi Fourier (FTIR). Kemudian, lignin yang diubahsuai telah digunakan sebagai pengisi dalam campuran NR/BR oleh kaedah pendekatan konvensional iaitu pencampuran kering. Kesan Payne menggunakan penganalisis process getah (RPA) dan sifat mekanik (sifat tegangan dan kekerasan) campuran NR/BR yang diisi dengan lignin diselidiki dalam kedua-dua kelompok induk dan sebatian tervulkan. Berdasarkan hasil yang diperoleh daripada ujian menunjukkan bahawa perubahan dalam ciri-ciri struktur lignin hidroksimetilasi mempengaruhi interaksi antara pengisi dan keupayaan pengukuhan. Oleh itu, penambahbaikan yang ketara telah dilihat dalam sifat mekanik terutama dalam kandungan rendah sehingga 10 phr. Perbandingan antara dua lignin yang diubahsuai, HMSL menyumbang peningkatan yang lebih tinggi daripada HMOL dalam komposit getah yang meningkatkan kekuatan tegangan dari 15.78 kepada 17.20 MPa, modulus pada 100% terikan (1.09 kepada 1.93 MPa), modulus pada 300% terikan (3.22 kepada 7.06 MPa) dan kekerasan (52 kepada 61.5 Shore A).  Kesimpulannya, penggunaan lignin yang diubahsuai kepada sebatian getah meningkatkan prestasi sebatian getah.

 

Kata kunci:  lignin, hidroksimetilasi, bio-pengisi, ciri struktur, kesan Payne

 

References

1.      Rajisha, K. R., Maria, H. J., Pothan, L.A., Ahmad, Z. and Thomas, S. (2014). Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. International Journal Biology Macromolecules, 67: 147-153.

2.      Abraham, E., Deepa, B., Pothan, L.A., John, M., Narine, S.S., Thomas, S. and Anandjiwala, R. (2013). Physicomechanical properties of nanocomposites based on cellulose nanofiber and natural rubber latex, Cellulose, 20: 417-427.

3.      Jong, L. (2014). Modulus enhancement of natural rubber through the dispersion size reduction of protein/fiber aggregates. Indian Crops Production, 55: 25-32.

4.      Upton, B. M., and Kasko, A. M. (2016). Strategies of the conversion of lignin to high-value polymeric materials: review and perspective. Chemical Reviews, 116: 2275-2306.

5.      Stewart, D. (2008). Lignin as a base material for material for materials applications, chemistry, application and economics. Indian Crops Production, 27: 202-207.

6.      Wang, M.-J., Kutsovsky, Y., Zhnag, P., Murphy, L. J., Laube, S. and Mahmud, K. (2002). New generation carbon-silica dual phase filler part 1. Characterization and application to passenger tire. Rubber Chemistry and Technology, 75: 247-263.

7.      Yu, P., He, H., Jia, Y., Tian, S., Chen, J., Jia, D. and Luo, Y. (2016). A comprehensive study on lignin as a green alternative of silica in natural rubber composites. Polymer. Testing, 54: 176-185.

8.      Bahl, K., Miyoshi, T. and Jana, S. C. (2014). Hybrid fillers of lignin and carbon black for lowering of viscoelastic loss in rubber compounds. Polymer, 55: 3825-3835.

9.      Popa, V. I., Căpraru, A. M., Grama, S. and Măluţan, T. (2011). Nanoparticles based on modified lignins with biocide properties. Cellulose Chemistry Technology, 45: 221-226.

10.   Mohamad Aini, N. A., Othman, N., Hussin, M. H., Sahakora, K. and Hayeemasae, N. (2019). Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites. Processes, 7: 315.

11.   Tejado, A., Pena, C., Labidi, J. and Echeverria, J. M. (2007). Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresource Technology, 98: 1655.

12.   He, S., Xue, Y., Lin, J., Zhang, L., Du, X. and Chen, L. (2016). Effect of silane coupling agent on the structure and mechanical properties of nano-dispersed clay filled styrene butadiene rubber. Polymer Composite, 37: 890-896. 

13.   Jia, Q.-X., Wu, Y.-P., Wang, Y.-Q., Lu, M., Yang, J. and Zhang, L.-Q. (2007). Organic interfacial tailoring of styrene butadiene rubber-clay nanocomposites prepared by latex compounding method. Journal Applied Polymer Science, 103: 1826-1833.

14.   Zheng, H., Zhang, Y., Peng, Z. and Zhang, Y. (2004). Influence of clay modification on the structure and mechanical properties of EPDM/montmorillonite nanocomposites. Polymer Testing, 23: 217-223.

15.   Jiang, C., He, H., Yao, X., Yu, P., Zhou, L. and Jia, D. (2017). The aggregation structure regulation of lignin by chemical modification and its effect on the property of lignin/styrene-butadiene rubber composites. Journal Applied Polymer Sciences, 135: 45759.