Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 719 - 726
COMPUTATIONAL STUDIES
ON NONLINEAR OPTICAL PROPERTIES OF METAL COMPLEXES CONTAINING AZOBENZENE
(Kajian Pengkomputeran Sifat
Optik Tidak Linear Terhadap Sebatian Komplek Logam yang Mengandungi Azobenzena)
Pang Siew Woon1, Suhaila Sapari2, Juan Matmin1, Fazira Ilyana Abdul Razak1*
1 Faculty of Science,
Universiti Teknologi Malaysia, 81200 Skudai, Johor
Bahru, Malaysia
2Centre for Advanced
Materials and Renewable Resources, Faculty of Science and
Technology,
Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
*Corresponding author:
fazirailyana@utm.my
Received: 13 November 2019;
Accepted: 3 September 2020; Published:
12 October 2020
Abstract
Ruthenium complexes containing different
azobenzene derivatives with different substituents provide different nonlinear
optical (NLO) properties. A computational study through the Hartree-Fock (HF)
method based on a 3-21G level and the density functional theory (DFT) methods
based on LANL2DZ/6-31G level were used in the investigation to reduce cost and
time of the experimental investigation. It was discovered that DFT-based
calculations were more accurate than the HF method based on the result of bond
length and bond angle obtained after the geometry optimization of three
ruthenium-azobenzene complexes; complex A, complex B, and complex C. The
investigation through the DFT method revealed that the three complexes possess
a high NLO property based on the value of total frequency-dependent first
hyperpolarizability, βtot obtained at the wavelength of 1064 nm
contributed by the electron delocalization effect, due to the presence of a
strong electron donating and withdrawing group in the azobenzene derivatives. It was revealed that Complex C possessed the
highest NLO property with a βtot value of 12414.87 x10-30 esu followed by complex A (11828.63x10-30
esu) and Complex B
(3372.10 x10-30 esu). The influence of the different structures of azobenzene containing metal to
enhance the strength of nonlinear optical properties through NLO calculation has been
successfully performed by the
DFT method. The high NLO property of complex C was
contributed by the -O(C=O)R group, which is a moderate electron-donating group
(EDG) and an amine group, which is a strong EDG especially when its hydrogen
group is replaced by the alkyl group.
Keywords:
nonlinear optic property, ruthenium complex, azobenzene, Hartree Fock,
density functional theory
Abstrak
Komplek ruthenium yang
mengandungi terbitan azobenzena pada kumpulan
pembolehubah yang pelbagai memberikan sifatoptik tidak linear yang
berbeza. Kajian pengkomputeran menggunakan kaedah Hartee-Fock (HF) dengan set
asas 3-21G dan teori fungsi ketumpatan (DFT) dengan set asas LANL2DZ/6-31G
telah dijalankan bagi mengurangkan kos dan masa yang digunakan dalam kaedah
experimen. Hasil pengiraan menunjukkan pengiraan menggunakan kaedah DFT adalah
lebih tepat berbanding menggunakan kaedah HF, berdasarkan nilai panjang ikatan
dan sudut ikatan yang diperolehi untuk tiga sebatian komplek
ruthenium-azobenzena; komplek A, B, dan C. Pengiraan menggunakan DFT
menunjukkan ketiga-tiga sebatian ini memberikan sifat optik tidak linear (NLO)
yang tinggi berdasarkan nilai jumlah dinamik kebergantungan frekuensi pertama,
βtot pada panjang
gelombang 1064 nm yang berpunca daripada kesan penyahsetempatan elektron dengan
kehadiran kumpulan penderma yang kuat dan kumpulan penarik yang kuat pada
terbitan azobenzena. Sebatian komplek C memberikan nilai βtot tertinggi iaitu
12414.87x10-30 esu diikuti dengan sebatian A (11828.63x10-30
esu) dan B (3372.10 x10-30
esu). Perubahan pada perbezaan struktur terbitan azobenzene yang mengandungi
logam dapat dilihat meningkatkan sifat optik tidak linear sebatian berdasarkan
pengiraan NLO yang telah dijalankan menggunakan kaedah DFT. Dapat dilihat
sebatian komplek C menunjukkan sifat optik tidak linear (NLO) yang tinggi
disebabkan kehadiran kumpulan -O(C=O)R yang merupakan kumpulan penderma
elektron dan kumpulan amina sebagai kumpulan penderma eletron yang kuat
terutamanya setelah kumpulan hidrogen digantikan dengan kumpulan alkil.
Kata
kunci: sifat optik tidak linear,
komplek ruthinium, azobenzena, Hartree Fock, teori fungi ketumpatan
References
1.
Lind, P. (2007). Organic and organometallic compounds for nonlinear
absorption of light. Phd Thesis, Umeå University, Sweden.
2.
Suresh, S., Ramanand, A., Jayaraman, D. and Mani, P. (2012). Review on theoretical
aspect of nonlinear optics. Review Advance
Material Sciences, 30: 175-183.
3.
Adur, J., Carvalho, H. F., Cesar, C. L., and Casco, V. H. (2014). Nonlinear optical
microscopy signal processing strategies in cancer. Cancer Informatic,13: 67-76.
4.
Li, A. D. and Liu, W. C
(2010). Optical properties of ferroelectric nanocrystal/polymer composites. Physical
Properties and Applications of Polymer Nanocomposites, 108-158.
5.
Sahraoui, B., Luc, J., Meghea, A., Czaplicki, R., Fillaut, J.
L. and Migalska-Zalas, A. (2009). Nonlinear optics and surface relief gratings in
alkynyl–ruthenium complexes. Journal of
Optics A: Pure and Applied Optics, 11(2) :1-26.
6.
Papadopoulos, M. G., Sadlej, A. J. and Leszczynski, J. (2006). Non-linear optical
properties of matter. Springer, Dordrecht.
7.
Foresman, J. B. and Frisch Æ. (2015). Exploring chemistry with electronic
structure methods. Gaussian Inc., Wallingford, CT.
8.
Baseia, B., Osório, F., Lima, L., and Valverde, C. (2017). Effects of changing
substituents on the non-linear optical properties of two coumarin derivatives. Crystals,
7(6): 158-172.
9.
Jamaludin, R. (2018). Nonlinear
optical properties investigation of ruthenium arylalkynyl complexes via
Hartree-Fock and density functional theory methods. PhD Thesis,
Universiti Teknologi Malaysia, Skudai.
10.
Younus, M., Long, N. J., Raithby, P. R., Lewis, J., Page, N.
A., White, A. J., Williams, D. J., Colbert, M. C.B., Hodge A. J., Khan, M. S.
and Parker, D. J. (1999). Synthesis and characterisation of mono-acetylide and
unsymmetrical bis-acetylide complexes of ruthenium and osmium: X-ray structure
determinations on [(dppe)2Ru(Cl)(C≡C–C6H4-p-NO2)],[(dppe)2Ru(Cl)(C≡C–C6H3-o-CH3-p-NO2)]
and [(dppm)2Os (C≡C–C6H4-p-CH3)(C≡C–C6H4-p-NO2)].
Journal of Organometallic Chemistry, 578(1-2) :198-209.
11.
Lewars, E. G. (2010). Computational
chemistry: Introduction to the theory and applications of molecular and quantum
mechanics. New York: Springer Science & Business Media.
12.
Oprea, C. I. (2007). Density functional response theory with
applications to electron and nuclear magnetic resonance. Doctoral dissertation.
KTH Royal Institute of Technology, Sweden.
13.
Chachiyo, T. and Chachiyo, H. (2017). Simple and accurate exchange energy
for density functional theory. Cornell
University, New York.
14.
Bartashevich, E. and Tsirelson, V. (2013). Atomic dipole
polarization in charge-transfer complexes with halogen bonding. Physical
Chemistry Chemical Physics, 15(7): 2530-2538.
15.
Karakas, A., Dag, T., Taser, M., Fillaut, J., Migalska-Zalas,
A. and Sahraoui, B. (2013). Second-order hyperpolarizability and susceptibility
calculations of a series of ruthenium complexes. 15th International
Conference on Transparent Optical Networks (ICTON). 23-27 June. Cartagena,
Spain: ICTON, pp. 1-4.
16.
Chatt, J. (1969). Nitrogen complexes of the platinum metals. Platinum Metals Review,13: 9-14.