Malaysian Journal of Analytical Sciences Vol 24 No 5 (2020): 719 - 726

 

 

 

 

COMPUTATIONAL STUDIES ON NONLINEAR OPTICAL PROPERTIES OF METAL COMPLEXES CONTAINING AZOBENZENE

 

(Kajian Pengkomputeran Sifat Optik Tidak Linear Terhadap Sebatian Komplek Logam yang Mengandungi Azobenzena)

 

 Pang Siew Woon1, Suhaila Sapari2, Juan Matmin1, Fazira Ilyana Abdul Razak1*

 

1 Faculty of Science,

Universiti Teknologi Malaysia, 81200 Skudai, Johor Bahru, Malaysia

2Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  fazirailyana@utm.my

 

 

Received: 13 November 2019; Accepted: 3 September 2020; Published:  12 October 2020

 

 

Abstract

Ruthenium complexes containing different azobenzene derivatives with different substituents provide different nonlinear optical (NLO) properties. A computational study through the Hartree-Fock (HF) method based on a 3-21G level and the density functional theory (DFT) methods based on LANL2DZ/6-31G level were used in the investigation to reduce cost and time of the experimental investigation. It was discovered that DFT-based calculations were more accurate than the HF method based on the result of bond length and bond angle obtained after the geometry optimization of three ruthenium-azobenzene complexes; complex A, complex B, and complex C. The investigation through the DFT method revealed that the three complexes possess a high NLO property based on the value of total frequency-dependent first hyperpolarizability, βtot obtained at the wavelength of 1064 nm contributed by the electron delocalization effect, due to the presence of a strong electron donating and withdrawing group in the azobenzene derivatives. It was revealed that Complex C possessed the highest NLO property with a βtot value of 12414.87 x10-30 esu followed by complex A (11828.63x10-30 esu) and Complex B (3372.10 x10-30 esu). The influence of the different structures of azobenzene containing metal to enhance the strength of nonlinear optical properties through NLO calculation has been successfully performed by the DFT method. The high NLO property of complex C was contributed by the -O(C=O)R group, which is a moderate electron-donating group (EDG) and an amine group, which is a strong EDG especially when its hydrogen group is replaced by the alkyl group.

 

Keywords:  nonlinear optic property, ruthenium complex, azobenzene, Hartree Fock, density functional theory

 

Abstrak

Komplek ruthenium yang mengandungi terbitan azobenzena pada kumpulan  pembolehubah yang pelbagai memberikan sifatoptik tidak linear yang berbeza. Kajian pengkomputeran menggunakan kaedah Hartee-Fock (HF) dengan set asas 3-21G dan teori fungsi ketumpatan (DFT) dengan set asas LANL2DZ/6-31G telah dijalankan bagi mengurangkan kos dan masa yang digunakan dalam kaedah experimen. Hasil pengiraan menunjukkan pengiraan menggunakan kaedah DFT adalah lebih tepat berbanding menggunakan kaedah HF, berdasarkan nilai panjang ikatan dan sudut ikatan yang diperolehi untuk tiga sebatian komplek ruthenium-azobenzena; komplek A, B, dan C. Pengiraan menggunakan DFT menunjukkan ketiga-tiga sebatian ini memberikan sifat optik tidak linear (NLO) yang tinggi berdasarkan nilai jumlah dinamik kebergantungan frekuensi pertama, βtot  pada panjang gelombang 1064 nm yang berpunca daripada kesan penyahsetempatan elektron dengan kehadiran kumpulan penderma yang kuat dan kumpulan penarik yang kuat pada terbitan azobenzena. Sebatian komplek C memberikan nilai  βtot tertinggi iaitu 12414.87x10-30 esu diikuti dengan sebatian A (11828.63x10-30 esu)  dan B (3372.10 x10-30 esu). Perubahan pada perbezaan struktur terbitan azobenzene yang mengandungi logam dapat dilihat meningkatkan sifat optik tidak linear sebatian berdasarkan pengiraan NLO yang telah dijalankan menggunakan kaedah DFT. Dapat dilihat sebatian komplek C menunjukkan sifat optik tidak linear (NLO) yang tinggi disebabkan kehadiran kumpulan -O(C=O)R yang merupakan kumpulan penderma elektron dan kumpulan amina sebagai kumpulan penderma eletron yang kuat terutamanya setelah kumpulan hidrogen digantikan dengan kumpulan alkil.

 

Kata kunci:  sifat optik tidak linear, komplek ruthinium, azobenzena, Hartree Fock, teori fungi ketumpatan

 

References

1.      Lind, P. (2007). Organic and organometallic compounds for nonlinear absorption of light. Phd Thesis, Umeå University, Sweden.

2.      Suresh, S., Ramanand, A., Jayaraman, D. and Mani, P. (2012). Review on theoretical aspect of nonlinear optics. Review Advance Material Sciences, 30: 175-183.

3.      Adur, J., Carvalho, H. F., Cesar, C. L., and Casco, V. H. (2014). Nonlinear optical microscopy signal processing strategies in cancer. Cancer Informatic,13: 67-76.

4.      Li, A. D. and Liu, W. C (2010). Optical properties of ferroelectric nanocrystal/polymer composites. Physical Properties and Applications of Polymer Nanocomposites, 108-158.

5.      Sahraoui, B., Luc, J., Meghea, A., Czaplicki, R., Fillaut, J. L. and Migalska-Zalas, A. (2009). Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes. Journal of Optics A: Pure and Applied Optics, 11(2) :1-26.

6.      Papadopoulos, M. G., Sadlej, A. J. and Leszczynski, J. (2006). Non-linear optical properties of matter. Springer, Dordrecht.

7.      Foresman, J. B. and Frisch Æ. (2015). Exploring chemistry with electronic structure methods. Gaussian Inc., Wallingford, CT.

8.      Baseia, B., Osório, F., Lima, L., and Valverde, C. (2017). Effects of changing substituents on the non-linear optical properties of two coumarin derivatives. Crystals, 7(6): 158-172. 

9.      Jamaludin, R. (2018). Nonlinear optical properties investigation of ruthenium arylalkynyl complexes via Hartree-Fock and density functional theory methods. PhD Thesis, Universiti Teknologi Malaysia, Skudai.

10.   Younus, M., Long, N. J., Raithby, P. R., Lewis, J., Page, N. A., White, A. J., Williams, D. J., Colbert, M. C.B., Hodge A. J., Khan, M. S. and Parker, D. J. (1999). Synthesis and characterisation of mono-acetylide and unsymmetrical bis-acetylide complexes of ruthenium and osmium: X-ray structure determinations on [(dppe)2Ru(Cl)(C≡C–C6H4-p-NO2)],[(dppe)2Ru(Cl)(C≡C–C6H3-o-CH3-p-NO2)] and [(dppm)2Os (C≡C–C6H4-p-CH3)(C≡C–C6H4-p-NO2)]. Journal of Organometallic Chemistry, 578(1-2) :198-209.

11.   Lewars, E. G. (2010). Computational chemistry: Introduction to the theory and applications of molecular and quantum mechanics. New York: Springer Science & Business Media.

12.   Oprea, C. I. (2007). Density functional response theory with applications to electron and nuclear magnetic resonance. Doctoral dissertation. KTH Royal Institute of Technology, Sweden.

13.   Chachiyo, T. and Chachiyo, H. (2017). Simple and accurate exchange energy for density functional theory. Cornell University, New York.

14.   Bartashevich, E. and Tsirelson, V. (2013). Atomic dipole polarization in charge-transfer complexes with halogen bonding. Physical Chemistry Chemical Physics, 15(7): 2530-2538.

15.   Karakas, A., Dag, T., Taser, M., Fillaut, J., Migalska-Zalas, A. and Sahraoui, B. (2013). Second-order hyperpolarizability and susceptibility calculations of a series of ruthenium complexes. 15th International Conference on Transparent Optical Networks (ICTON). 23-27 June. Cartagena, Spain: ICTON, pp. 1-4.

16.   Chatt, J. (1969). Nitrogen complexes of the platinum metals. Platinum Metals Review,13: 9-14.