Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 727 - 735
THE INFLUENCE OF Pd
NANOPARTICLE SIZE ON Pd/TiO2 CATALYSTS FOR CINNAMALDEHYDE
HYDROGENATION REACTION
(Pengaruh
Saiz Nanopartikel Pd pada Pemangkin Pd/TiO2 untuk Tindak Balas
Hidrogenasi Sinnamaldehid)
Norli Abdullah1*, Hasliza Bahruji2, Fadhlina
Che Ros3, Imran Syakir Mohamad4
1Department of Chemistry
and Biology, Centre for Defence Foundation Studies,
National Defence University of Malaysia, Sungai
Besi Camp, 57000 Kuala Lumpur, Malaysia
2Centre of Advanced
Material and Energy Sciences,
Universiti Brunei Darussalam, Jalan Tungku
Link, BE 1410, Brunei Darussalam
3Department of Physics,
Centre for Defence Foundation Studies,
National Defence University of Malaysia, Sungai
Besi Camp, 57000 Kuala Lumpur, Malaysia
4Faculty of Mechanical Engineering,
Universiti
Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka,
Malaysia
*Corresponding author: norli.abdullah@upnm.edu.my
Received: 13 November 2019;
Accepted: 3 September 2020; Published:
12 October 2020
Abstract
Palladium nanoparticles (PdNP) supported onto
the anatase phase of TiO2 were successfully synthesised using a
colloidal method. This synthesis method involved the reduction of K2PdCl4
solution by NaBH4 at different temperatures (1, 25, 50, 75 oC)
and stabilised with PVA ligand. Transmission electron microscope (TEM) was used
to determine the particle size of PdNP on the TiO2. Colloidal
synthesis at 1 oC and 25 oC produced PdNP with less than
a 3 nm diameter, whereas when the synthesis temperatures were higher than 25 oC,
PdNP were produced with a size larger than 4 nm. The catalytic activity of
Pd/TiO2 was significantly improved when palladium (Pd) was produced
at 1 oC with high selectivity towards the hydrogenation of
cinnamaldehyde to hydrocinnamaldehyde. The conversion and selectivity trends
from the cinnamaldehyde hydrogenation reaction demonstrated the influence of Pd
nanoparticle size to provide active sites for the reduction of C=C and C=O
bonds. Pd with a diameter of 2.58 nm favoured hydrogenation of C=C bond to
produce high selectivity towards hydrocinnamaldehyde, meanwhile a large Pd
diameter > 4 nm allowed simultaneaous reduction of C=C and C=O bonds to give
comparable selectivity between hydrocinnamaldehyde and hydrocinnamylalcohol.
Keywords: palladium nanoparticles,
cinnamaldehyde hydrogenation
Abstrak
Nanopartikel palladium (PdNP) yang disokong
pada fasa anatase TiO2 telah berjaya disintesis dengan kaedah
koloidal. Kaedah sintesis ini melibatkan penurunan larutan K2PdCl4
oleh NaBH4 pada kumpulan suhu yang berbeza (1, 25, 50, 75 oC)
dan distabilkan menggunakan ligan PVA. Mikroskop elektron transmisi (TEM)
digunakan untuk mengukur saiz partikel PdNP di atas pemangkin. Sintesis koloid
pada suhu 1 oC dan 25 oC menghasilan PdNP kurang daripada
3 nm, manakala suhu lebih tinggi dari 25 oC menghasilkan PdNP lebih
besar daripada 4 nm. Aktiviti pemangkinan Pd/TiO2 meningkat dengan
ketara apabila palladium (Pd) dihasilkan pada 1 oC dengan pemilihan
yang tinggi terhadap hidrogenasi sinamaldehid ke hidrosinamaldehid. Trend
penukaran dan pemilihan dalam tindak balas hidrogenasi sinamaldehid menunjukkan
pengaruh diameter saiz nanopartikel dalam menyediakan tapak aktif untuk
penurunan ikatan C=C dan C=O. Pd dengan diameter 2.58 nm lebih menyukai
hidrogenasi ikatan C=C untuk menghasilkan pemilihan tinggi terhadap
hidrosinamaldehid, manakala saiz Pd berdiameter > 4nm membenarkan penurunan
ikatan C=C dan C=O secara serentak untuk memberikan persamaan pemilihan antara
hidrosinamaldehid dan hidrosinamilalkohol.
Kata
kunci: palladium nanopartikel, hydrogenasi
sinamaldehid
References
1.
Lichen, L. and Avelino, C. (2018). Metal
catalysts for heterogeneous catalysis: From single atoms to nanoclusters and
nanoparticles. Chemical Reviews, 118(10):
4981-5079.
2.
Solsona, B. E., Edwards, J. K.
and P. Landon. (2006). Direct synthesis of hydrogen peroxide from H2 and O2
using Al2O3 supported Au-Pd catalysts. Chemistry of Materials, 18(11):
2689-2695.
3.
Tapin, B., Epron,
F., Especel, C., Ly, B. K. and Pinel, C. (2013). Study of monometallic Pd/TiO2
catalysts for the hydrogenation of succinic acid in aqueous phase. American Chemical Society, 3(10):
2327-2335.
4.
Bagheri, S., Julkapli, M.,
Nurhidayatullaili, and Abd Hamid, S. B. (2014). Titanium dioxide as a catalyst
support in heterogeneous catalysis. The
Scientific World Journal, 2014: 727496.
5.
Kaden, W. E., Kunkel, W. E., Roberts, F. S., Kane, M., and Anderson, S.
L. (2014). Thermal and adsorbate effects on the activity and morphology of
size-selected Pdn/TiO2 model catalysts. Surface Science, 621; 40-50.
6.
Kim, B. H., Hackett, M. J.,
Park, J. and Hyeon, T. (2014). Synthesis, characterization, and application of
ultrasmall nanoparticles. Chemistry of
Materials, 26(1): 59-71.
7.
Cao, A.-M., Cao, A.-M., Lu, R.,
Veser, G. and Veser, G. (2010). Stabilizing metal nanoparticles for
heterogeneous catalysis. Physical
Chemistry Chemical Physics, 12(41): 13499-13510.
8.
Long, N. T., Nguyen, C.,
Hirata, H., Ohtaki, M., Hayakawa, T. and Nogami, M. (2010). Chemical synthesis
and characterization of palladium nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology,
1(035012): 1-5.
9.
Espro, C., Donato, A. and
Galvagno, S. (2016). On the formation of cinnamyl alcohol during the
hydrogenation of cinnamaldehyde under mild conditions on supported palladium
catalysts. Reaction Kinetic, Mechanisms
and Catalysis, 118: 223-233.
10. Feng,
J., Jian, C., Bing, L., Yuebing, X. and Xiaohao, L. (2016). Particle size
effects in the selective hydrogenation of cinnamaldehyde over supported
palladium catalysts. Royal Society of
Chemistry Advanced, 6: 75541-75551.
11.
Yang, L. W., Longlong,
M., Xinjun, L., Tiejun W. and Shijun, Liao. (2015). Pd nano-particles (NPs)
confined in titanate nanotubes (TNTs) for hydrogenation of cinnamaldehyde. Catalysis
Communications, 59: 184-188.
12.
Zhao, B. N., Chen, J. G., Liu,
X., Liu, W., Hao, Z., Xiao, J. and Liu Z, T. (2012). Selective hydrogenation
of cinnamaldehyde over Pt and Pd supported on multiwalled carbon nanotubes in a
CO2-expanded alcoholic medium. Industrial
& Engineering Chemistry Research., 51(34):
11112-11121.
13.
Mehri A, Kochkar H, Daniele S,
Mendez V., Ghorbel A. and Berhault G. (2012). One-pot deposition of palladium
on hybrid TiO2 nanoparticles and catalytic applications in
hydrogenation. Journal of Colloidal
Interface Science, 369(1): 309-316.
14.
Ansari, P., Kizhakoottu, K. J.,
Sanchita, Sil. and Nallaperumal, S. K. (2018). A facile green tea assisted
synthesis of palladium nanoparticles using tecovered palladium from dpent
palladium impregnated carbon. Johnson Matthey Technology Review,
62(1):60-73.
15.
Norli, A., Hasliza, B.,
Michael, B., Scott M. R., Peter P. W. and C. Richard A. C. (2019). Efficient
electronic transfer on palladium/TiO2 for hydrogen production from
photocatalytic reforming of methanol. Physical Chemistry Chemical Physic,
21:16154-16160.
16.
Nguyen T. K., Thanh, N.,
Maclean. and Mahiddine, S. (2014). Mechanisms of nucleation and growth of
nanoparticles in solution. Chemical Reviews, 114(15):7610-7630.
17.
Kahsar, K. R., Johnson, S. and
Schwartz, D. K. (2014). Hydrogenation of cinnamaldehyde over Pd/Al2O3
catalysts modified with thiol monolayers. Topic
in Catalysis, 57: 1505-1511.
18.
Cabiac, A., Cacciaguerra, T.,
Trens, P., Durand, R., Delahay, G., Medevielle, A., Plee, D. and Coq. B.
(2008). Influence of textural properties of activated carbons on Pd/carbon
catalysts synthesis for cinnamaldehyde hydrogenation. Applied Catalysis A: General,
340: 229-235.
19.
Gallezot, P. and Richard, D.
(1998). Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis
Reviews-Science and Engineering, 40: 81-126.
20.
Ma, Y., Feng, Lu., Guo, Z.,
Deng, J., Pham-Huu, C., and Liu, Y. (2019). Palladium supported on calcium
decorated carbon nanotube hybrids for chemoselective hydrogenation of
cinnamaldehyde. Frontiers in Chemistry, 7(751):1-10.
21.
Maki-Arvela, P., Hajek, J.,
Salmi, T. and Yu, M. (2005). Chemoselective hydrogenation of carbonyl compounds
over heterogeneous catalysts. Applied
Catalysis A: General, 292:1-49.
22. Kołodziej,
M., Drelinkiewicz, A., Lalik, E., Gurgul, J., Duraczyńska, D., and Kosydar,
R. (2016). Activity/selectivity control in Pd/HxMoO3 catalyzed
cinnamaldehyde hydrogenation. Applied
Catalysis A: General, 515: 60-71.