Malaysian Journal of Analytical Sciences Vol 24 No 5 (2020): 727 - 735

 

 

 

 

THE INFLUENCE OF Pd NANOPARTICLE SIZE ON Pd/TiO2 CATALYSTS FOR CINNAMALDEHYDE HYDROGENATION REACTION

 

(Pengaruh Saiz Nanopartikel Pd pada Pemangkin Pd/TiO2 untuk Tindak Balas Hidrogenasi Sinnamaldehid)

 

Norli Abdullah1*, Hasliza Bahruji2, Fadhlina Che Ros3, Imran Syakir Mohamad4

 

1Department of Chemistry and Biology, Centre for Defence Foundation Studies,

National Defence University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur, Malaysia

2Centre of Advanced Material and Energy Sciences,

Universiti Brunei Darussalam, Jalan Tungku Link, BE 1410, Brunei Darussalam

3Department of Physics, Centre for Defence Foundation Studies,

National Defence University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur, Malaysia

4Faculty of Mechanical Engineering,

Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

 

*Corresponding author:  norli.abdullah@upnm.edu.my

 

 

Received: 13 November 2019; Accepted: 3 September 2020; Published:  12 October 2020

 

 

Abstract

Palladium nanoparticles (PdNP) supported onto the anatase phase of TiO2 were successfully synthesised using a colloidal method. This synthesis method involved the reduction of K2PdCl4 solution by NaBH4 at different temperatures (1, 25, 50, 75 oC) and stabilised with PVA ligand. Transmission electron microscope (TEM) was used to determine the particle size of PdNP on the TiO2. Colloidal synthesis at 1 oC and 25 oC produced PdNP with less than a 3 nm diameter, whereas when the synthesis temperatures were higher than 25 oC, PdNP were produced with a size larger than 4 nm. The catalytic activity of Pd/TiO2 was significantly improved when palladium (Pd) was produced at 1 oC with high selectivity towards the hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. The conversion and selectivity trends from the cinnamaldehyde hydrogenation reaction demonstrated the influence of Pd nanoparticle size to provide active sites for the reduction of C=C and C=O bonds. Pd with a diameter of 2.58 nm favoured hydrogenation of C=C bond to produce high selectivity towards hydrocinnamaldehyde, meanwhile a large Pd diameter > 4 nm allowed simultaneaous reduction of C=C and C=O bonds to give comparable selectivity between hydrocinnamaldehyde and hydrocinnamylalcohol.

 

Keywords:  palladium nanoparticles, cinnamaldehyde hydrogenation

 

Abstrak

Nanopartikel palladium (PdNP) yang disokong pada fasa anatase TiO2 telah berjaya disintesis dengan kaedah koloidal. Kaedah sintesis ini melibatkan penurunan larutan K2PdCl4 oleh NaBH4 pada kumpulan suhu yang berbeza (1, 25, 50, 75 oC) dan distabilkan menggunakan ligan PVA. Mikroskop elektron transmisi (TEM) digunakan untuk mengukur saiz partikel PdNP di atas pemangkin. Sintesis koloid pada suhu 1 oC dan 25 oC menghasilan PdNP kurang daripada 3 nm, manakala suhu lebih tinggi dari 25 oC menghasilkan PdNP lebih besar daripada 4 nm. Aktiviti pemangkinan Pd/TiO2 meningkat dengan ketara apabila palladium (Pd) dihasilkan pada 1 oC dengan pemilihan yang tinggi terhadap hidrogenasi sinamaldehid ke hidrosinamaldehid. Trend penukaran dan pemilihan dalam tindak balas hidrogenasi sinamaldehid menunjukkan pengaruh diameter saiz nanopartikel dalam menyediakan tapak aktif untuk penurunan ikatan C=C dan C=O. Pd dengan diameter 2.58 nm lebih menyukai hidrogenasi ikatan C=C untuk menghasilkan pemilihan tinggi terhadap hidrosinamaldehid, manakala saiz Pd berdiameter > 4nm membenarkan penurunan ikatan C=C dan C=O secara serentak untuk memberikan persamaan pemilihan antara hidrosinamaldehid dan hidrosinamilalkohol.

 

Kata kunci:  palladium nanopartikel, hydrogenasi sinamaldehid

 

References

1.      Lichen, L. and Avelino, C. (2018). Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chemical Reviews, 118(10): 4981-5079. 

2.      Solsona, B. E., Edwards, J. K. and P. Landon. (2006). Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au-Pd catalysts. Chemistry of Materials, 18(11): 2689-2695.

3.      Tapin, B., Epron, F., Especel, C., Ly, B. K. and Pinel, C. (2013). Study of monometallic Pd/TiO2 catalysts for the hydrogenation of succinic acid in aqueous phase. American Chemical Society, 3(10): 2327-2335.

4.      Bagheri, S., Julkapli, M., Nurhidayatullaili, and Abd Hamid, S. B. (2014). Titanium dioxide as a catalyst support in heterogeneous catalysis. The Scientific World Journal, 2014: 727496.

5.      Kaden, W. E., Kunkel, W. E., Roberts, F. S., Kane, M., and Anderson, S. L. (2014). Thermal and adsorbate effects on the activity and morphology of size-selected Pdn/TiO2 model catalysts. Surface Science, 621; 40-50.

6.      Kim, B. H., Hackett, M. J., Park, J. and Hyeon, T. (2014). Synthesis, characterization, and application of ultrasmall nanoparticles. Chemistry of Materials, 26(1): 59-71.

7.      Cao, A.-M., Cao, A.-M., Lu, R., Veser, G. and Veser, G. (2010). Stabilizing metal nanoparticles for heterogeneous catalysis. Physical Chemistry Chemical Physics, 12(41): 13499-13510.

8.      Long, N. T., Nguyen, C., Hirata, H., Ohtaki, M., Hayakawa, T. and Nogami, M. (2010). Chemical synthesis and characterization of palladium nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1(035012): 1-5.

9.      Espro, C., Donato, A. and Galvagno, S. (2016). On the formation of cinnamyl alcohol during the hydrogenation of cinnamaldehyde under mild conditions on supported palladium catalysts. Reaction Kinetic, Mechanisms and Catalysis, 118: 223-233.

10.   Feng, J., Jian, C., Bing, L., Yuebing, X. and Xiaohao, L. (2016). Particle size effects in the selective hydrogenation of cinnamaldehyde over supported palladium catalysts. Royal Society of Chemistry Advanced, 6: 75541-75551.

11.   Yang, L. W., Longlong, M., Xinjun, L., Tiejun W. and Shijun, Liao. (2015). Pd nano-particles (NPs) confined in titanate nanotubes (TNTs) for hydrogenation of cinnamaldehyde. Catalysis Communications, 59: 184-188.

12.   Zhao, B. N., Chen, J. G., Liu, X., Liu, W., Hao, Z., Xiao, J. and Liu Z, T. (2012). Selective hydrogenation of cinnamaldehyde over Pt and Pd supported on multiwalled carbon nanotubes in a CO2-expanded alcoholic medium. Industrial & Engineering Chemistry Research., 51(34): 11112-11121.

13.   Mehri A, Kochkar H, Daniele S, Mendez V., Ghorbel A. and Berhault G. (2012). One-pot deposition of palladium on hybrid TiO2 nanoparticles and catalytic applications in hydrogenation. Journal of Colloidal Interface Science, 369(1): 309-316.

14.   Ansari, P., Kizhakoottu, K. J., Sanchita, Sil. and Nallaperumal, S. K. (2018). A facile green tea assisted synthesis of palladium nanoparticles using tecovered palladium from dpent palladium impregnated carbon. Johnson Matthey Technology Review, 62(1):60-73.

15.   Norli, A., Hasliza, B., Michael, B., Scott M. R., Peter P. W. and C. Richard A. C. (2019). Efficient electronic transfer on palladium/TiO2 for hydrogen production from photocatalytic reforming of methanol. Physical Chemistry Chemical Physic, 21:16154-16160.

16.   Nguyen T. K., Thanh, N., Maclean. and Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114(15):7610-7630.

17.   Kahsar, K. R., Johnson, S. and Schwartz, D. K. (2014). Hydrogenation of cinnamaldehyde over Pd/Al2O3 catalysts modified with thiol monolayers. Topic in Catalysis, 57: 1505-1511.

18.   Cabiac, A., Cacciaguerra, T., Trens, P., Durand, R., Delahay, G., Medevielle, A., Plee, D. and Coq. B. (2008). Influence of textural properties of activated carbons on Pd/carbon catalysts synthesis for cinnamaldehyde hydrogenation. Applied Catalysis A: General, 340: 229-235.

19.   Gallezot, P. and Richard, D. (1998). Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis Reviews-Science and Engineering, 40: 81-126.

20.   Ma, Y., Feng, Lu., Guo, Z., Deng, J., Pham-Huu, C., and Liu, Y. (2019). Palladium supported on calcium decorated carbon nanotube hybrids for chemoselective hydrogenation of cinnamaldehyde. Frontiers in Chemistry, 7(751):1-10.

21.   Maki-Arvela, P., Hajek, J., Salmi, T. and Yu, M. (2005). Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Applied Catalysis A: General, 292:1-49.

22.   Kołodziej, M., Drelinkiewicz, A., Lalik, E., Gurgul, J., Duraczyńska, D., and Kosydar, R. (2016). Activity/selectivity control in Pd/HxMoO3 catalyzed cinnamaldehyde hydrogenation. Applied Catalysis A: General, 515: 60-71.