Malaysian Journal of Analytical Sciences Vol 24 No 5 (2020): 698 - 706

 

 

 

 

MORPHOLOGICAL AND CONDUCTIVITY STUDIES OF POLYANILINE FABRIC DOPED PHOSPHORIC ACID

 

(Kajian Morfologi dan Kekonduksian Fabrik Polianilina yang telah Terdop oleh Asid Fosforik)

 

Nazreen Che Roslan1, Muhammad Faiz Aizamddin1, Siti Nurzatul Ikma Omar1, Nur Aimi Jani1,2, Mohamed Izzharif Abdul Halim3, Zaidah Zainal Ariffin4, Mohd Muzamir Mahat1*

 

1School of Physics and Materials Studies, Faculty of Applied Sciences

2Centre of Functional Materials and Nanotechnology, Institute of Science 

3School of Chemistry and Environmental Studies, Faculty of Applied Sciences

4School of Biology, Faculty of Applied Sciences

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  mmuzamir@uitm.edu.my

 

 

Received: 30 March 2020; Accepted: 9 September 2020; Published: 12 October 2020

 

 

Abstract

Polyaniline doped phosphoric acid was synthesised through chemical oxidation. The morphology and conductivity properties of the materials were characterised with field emission scanning electron and electrochemical impedance spectroscopy. UV-Vis analysis confirmed the presence of polyaniline through the observation of benzenoid and quinoid structure. The protonation of polyaniline emeraldine base (PANI-EB) into PANI-ES was confirmed when the solution changed from blue to green. The addition of hydrochloric acid (HCl) in the protonation supplied H+ ion to the polymer backbone. Three batches of PANI solutions were treated with 10% v/v, 20% v/v and 30% v/v phosphoric acid as the dopant. Conductive polyaniline was fabricated by immersing bare cotton fabric into PANI solutions of different concentrations, followed by drying. Conductivity studies with EIS revealed that doped sample had higher conductivity compared to undoped sample, with the highest recorded conductivity of 3.37 x 10-6 ± 8.89 x 10-7 S/m at a concentration of 30% v/v. This result was supported by FESEM analysis which showed a homogenous distribution of PANI on the cotton, which reflected optimum incorporation of PANI into the fabric. Furthermore, the amount of deposited precipitate increased as the concentration of dopant acid increased. This observation was in line with the results from EIS analysis that showed higher conductivity of fabric in tandem with increasing concentration of dopant.

 

Keywords:  polyaniline, conductive fabrics, cotton, electro impedance spectroscopy, field emission scanning electron microscope

 

Abstrak

Polianilina,  suatu  bentuk  polimer  pengalir elektrik telah disintesis  melalui kaedah  pengoksidaan  kimia  menggunakan asid  fosforik sebagai dopan. UV-Vis telah menunjukkan kehadiran struktur benzenoid dan quinoid dalam sampel selari dengan struktur polianilina. PANI-EB yang  pada  mulanya  berwarna  biru  berubah  menjadi  hijau  apabila  melalui protonasi (PANI-ES). Protonasi ini berlaku disebabkan oleh penambahan asid hidroklorik (HCl) yang membekalkan caj H+ terhadap rantaian utama polimer. Fabrik konduktif polianilina dihasilkan melalui kaedah perendaman. Proses ini dilakukan dengan merendamkan kain kapas kosong ke dalam larutan PANI yang dirawat dengan asid fosforik sebagai dopan pada kepekatan yang berbeza, iaitu 10% v/v, 20% v/v dan 30% v/v diikuti dengan proses pengeringan. Kajian konduktiviti  menggunakan  EIS menunjukan bahawa  sampel yang terdop dengan asid mempunyai kekonduksian yang lebih tinggi berbanding sampel tidak terdop. Kekonduksian tertinggi didapati pada 30% v/v (3.37 x 10-6 ± 8.89 x 10-7 S/m). Analisis morfologi menggunakan FESEM menunjukkan pengedaran PANI yang sekata pada permukaan kapas. Ini membuktikan penyerapan PANI yang baik ke dalam kain. Selain itu, lebih banyak mendakan PANI didapati pada permukaan kain apabila kepekatan asid dopan bertambah. Ini adalah selari dengan hasil bacaan tahap kekonduksian elektrik.

 

Kata kunci:  polianilina, fabrik konduktif, fabrik, spektroskopi impedansi elektrokimia, mikroskop pengimbasan pelepasan medan

 

References

1.      Ahmad, S., Sultan, A., Raza, W., Muneer, M. and Mohammad, F. (2016). Preparation, characterization and application of polyaniline/silk fibroin composite. Polymers and Polymer Composites, 24(8): 633-642.

2.      Mirmohseni, A., Azizi, M. and Dorraji, M. S. (2020). Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers: A promising candidate for simultaneous anticorrosion, antistatic, and antibacterial applications. Progress in Organic Coatings, 139: 105419.

3.      Ma, Z., Shi, W., Yan, K., Pan, L. and Yu, G. (2019). Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chemical Science, 10(25): 6232-6244.

4.      Mawad, D., Mansfield, C., Lauto, A., Perbellini, F., Nelson, G. W., Tonkin, J. and Stevens, M. M. (2016). A conducting polymer with enhanced electronic stability applied in cardiac models. Science Advances, 2(11): e1601007.

5.      Mahat, M. M., Mawad, D., Nelson, G. W., Fearn, S., Palgrave, R. G., Payne, D. J. and Stevens, M. M. (2015). Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy. Journal of Materials Chemistry C, 3(27): 7180-7186.

6.      Yang, Y., Chen, S. and Xu, L. (2011). Enhanced conductivity of polyaniline by conjugated crosslinking. Macromolecular Rapid Communications, 32(7): 593-597.

7.      Noby, H., El-Shazly, A., Elkady, M. and Ohshima, M. (2019). Strong acid doping for the preparation of conductive polyaniline nanoflowers, nanotubes, and nanofibers. Polymer, 182: 121848.

8.      Ansari, M. O., Khan, M. M., Ansari, S. A., Amal, I., Lee, J. and Cho, M. H. (2014). pTSA doped conducting graphene/polyaniline nanocomposite fibers: Thermoelectric behavior and electrode analysis. Chemical Engineering Journal, 242: 155-161.

9.      Price, A.  D. and Naguib, H.  E. (2008).  Synthesis and characterization of porous polyaniline conductive polymers. Cellular Polymers, 27(3): 201-212.

10.   Aggadi, S. E., Loudiyi, N., Chadil, A., Abbassi, Z. E. and Hourch, A. E. (2020). Electropolymerization of aniline monomer and effects of synthesis conditions on the characteristics of synthesized polyaniline thin films. Mediterranean Journal of Chemistry, 10(2): 138-145.

11.   Taş, R., Can, M. and Sarı, H. (2019). The chemical synthesis and characterizations of silver-doped polyaniline: Role of silver–solvent interactions. Polymer Bulletin, 77(4): 1913-1928.

12.   Boeva, Z. A. and Sergeyev, V. G. (2014). Polyaniline: Synthesis, properties, and application. Polymer Science Series C, 56(1): 144-153.

13.   Ramli, R., Arawi, A. Z., Mahat, M. M., Mohd., A. F. and Yahya, M. F. (2011). Effect of silver (Ag) substitution nano-hydroxyapatite synthesis by microwave processing. 2011 International Conference on Business, Engineering and Industrial Applications, Kuala Lumpur: pp. 180-183

14.   Ramli, J., Jeefferie, A. R. and Mahat, M. M. (2011). Effects of UV curing exposure time to the mechanical and physical properties of the epoxy and vinyl ester fiber glass laminates composites, ARPN Journal of Engineering and Applied Sciences, 6(4): 104-109.

15.   Sharma, S., Kumar, V., Pathak, A. K., Yokozeki, T., Yadav, S. K., Singh, V. N. and Singh, B. P. (2018). Design of MWCNT bucky paper reinforced PANI–DBSA–DVB composites with superior electrical and mechanical properties. Journal of Materials Chemistry C, 6(45): 12396.

16.   Wu, L., Ge, Y., Zhang, L., Yu, D., Wu, M. and Ni, H. (2018). Enhanced electrical conductivity and competent mechanical properties of polyaniline/polyacrylate (PANI/PA) composites for antistatic finishing prepared at the aid of polymeric stabilizer. Progress in Organic Coatings, 125: 99-108.

17.   Humpolíček, P., Radaszkiewicz, K. A., Capáková, Z., Pacherník, J., Bober, P., Kašpárková, V. and Stejskal, J. (2018). Polyaniline cryogels: Biocompatibility of novel conducting macroporous material. Scientific Reports, 8(1): 135.

18.   Aizamddin, M. F., Roslan, N. C., Kamaruddin, M. A., Omar, S. N., Safian, M. F., Abdul Halim, M. I. and Mahat, M. M. (2020). Study of conductivity and thermal properties of polyaniline doped with p-toluene sulfonic acid. Malaysian Journal of Analytical Sciences, 24(3): 413-421.

19.   Hao, L., Wang, R., Fang, K. and Cai, Y. (2017). The modification of cotton substrate using chitosan for improving its dyeability towards anionic microencapsulated nano-pigment particles. Industrial Crops and Products, 95: 348-356.

20.   Liu, Y., Zhao, X., Tuo, X. (2016). Preparation of polypyrrole coated cotton conductive fabrics. The Journal of the Textile Institute, 108(5): 829-834.

21.   Cruz-Pacheco, A. F., Paredes-Madrid, L., Orozco, J., Gómez-Cuaspud, J. A., Batista-Rodríguez, C. R. and Gómez, C. A. (2020). Assessing the influence of the sourcing voltage on polyaniline composites for stress sensing applications. Polymers, 12(5): 1164.

22.   Omar, S. N., Ariffin, Z. Z., Zakaria, A., Safian, M. F., Halim, M. I., Ramli, R., Mahat, M. M. (2020). Electrically conductive fabric coated with polyaniline: Physicochemical characterisation and antibacterial assessment. Emergent Materials, 3: 469-477.

23.   Tang, S. J., Wang, A. T., Lin, S. Y., Huang, K. Y., Yang, C. C., Yeh, J. M. and Chiu, K. C. (2011). Polymerization of aniline under various concentrations of APS and HCl. Polymer Journal, 43(8): 667-675.

24.   Paschoalin, R. T., Steffens, C., Manzoli, A., Paris, E. C. and Herrmann, P. S. (2012). PANI conductivity: A dependence of the chemical synthesis temperature. Macromolecular Symposia, 319(1): 48-53.

25.   Karaoğlan, N. and Bindal, C. (2018). Synthesis and optical characterization of benzene sulfonic acid doped polyaniline. Engineering Science and Technology, an International Journal, 21(6): 1152-1158.

26.   Wang, Y., Chen, K., Li, T. and Li, H. (2015). One-step and template-free synthesis of itaconic acid–doped polyaniline nanorods in aqueous solution. High Performance Polymers, 28(3): 322-330. 

27.   Ziadan, K.  (2016).  Study of the electrical characteristics of polyaniline prepared by electrochemical polymerization. Energy Procedia, 19(2012): 71-79.

28.   Alamer, F.  A. (2018).  Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose, 25(3): 2075–2082.

29.   Omar, S., Ariffin, Z., Akhir, R., Shri, D., Halim, M., Safian, M. and Mahat, M. (2019). Polyaniline (PANI) fabric doped p-toluene sulfonic acid (pTSA) with anti-infection properties. Materials Today: Proceedings, 16: 1994-2002.

30.   Mostafaei, A. and Zolriasatein, A. (2012). Materials international synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Progress in Natural Science: Materials International, 22(4): 273-280.

31.   Perumalraj, R. (2015). Electrical surface resistivity of polyaniline coated woven fabrics. Journal of Textile Science & Engineering. 5(3): 1-5.

32.   Wu, B., Zhang, B., Wu, J., Wang, Z., Ma, H. and Yu, M. (2015). Electrical switchability and dry-wash durability of conductive textiles. Scientific Report, 5: 11255.