Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 698 - 706
MORPHOLOGICAL AND CONDUCTIVITY STUDIES OF POLYANILINE FABRIC DOPED
PHOSPHORIC ACID
(Kajian Morfologi dan Kekonduksian Fabrik
Polianilina yang telah Terdop oleh Asid Fosforik)
Nazreen Che
Roslan1, Muhammad Faiz Aizamddin1, Siti Nurzatul Ikma
Omar1, Nur Aimi Jani1,2, Mohamed
Izzharif Abdul Halim3, Zaidah Zainal Ariffin4, Mohd
Muzamir Mahat1*
1School of Physics and
Materials Studies, Faculty of Applied Sciences
2Centre of Functional
Materials and Nanotechnology, Institute of Science
3School of Chemistry and
Environmental Studies, Faculty of Applied Sciences
4School of Biology,
Faculty of Applied Sciences
Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
*Corresponding author: mmuzamir@uitm.edu.my
Received: 30 March 2020;
Accepted: 9 September 2020; Published: 12 October 2020
Abstract
Polyaniline doped phosphoric acid was
synthesised through chemical oxidation. The morphology and conductivity properties of the
materials were characterised with field emission scanning electron and
electrochemical impedance spectroscopy. UV-Vis analysis confirmed the presence
of polyaniline through the observation of benzenoid and quinoid structure. The
protonation of polyaniline emeraldine base (PANI-EB) into PANI-ES was confirmed
when the solution changed from blue to green. The addition of hydrochloric acid
(HCl) in the protonation supplied H+ ion to the polymer backbone.
Three batches of PANI solutions were treated with 10% v/v, 20% v/v and 30% v/v
phosphoric acid as the dopant. Conductive polyaniline was fabricated by
immersing bare cotton fabric into PANI solutions of different concentrations,
followed by drying. Conductivity studies with EIS revealed that doped sample
had higher conductivity compared to undoped sample, with the highest recorded
conductivity of 3.37 x 10-6 ± 8.89 x 10-7 S/m at a
concentration of 30% v/v. This result was supported by FESEM analysis which
showed a homogenous distribution of PANI on the cotton, which reflected optimum
incorporation of PANI into the fabric. Furthermore, the amount of deposited
precipitate increased as the concentration of dopant acid increased. This
observation was in line with the results from EIS analysis that showed higher
conductivity of fabric in tandem with increasing concentration of dopant.
Keywords: polyaniline, conductive fabrics,
cotton, electro impedance spectroscopy, field emission scanning electron
microscope
Abstrak
Polianilina, suatu
bentuk polimer pengalir elektrik telah disintesis melalui kaedah pengoksidaan
kimia menggunakan asid fosforik sebagai dopan. UV-Vis telah
menunjukkan kehadiran struktur benzenoid dan quinoid dalam sampel selari dengan
struktur polianilina. PANI-EB yang
pada mulanya berwarna
biru berubah menjadi
hijau apabila melalui protonasi (PANI-ES). Protonasi ini
berlaku disebabkan oleh penambahan asid hidroklorik (HCl) yang membekalkan caj
H+ terhadap rantaian utama polimer. Fabrik konduktif polianilina
dihasilkan melalui kaedah perendaman. Proses ini dilakukan dengan merendamkan
kain kapas kosong ke dalam larutan PANI yang dirawat dengan asid fosforik
sebagai dopan pada kepekatan yang berbeza, iaitu 10% v/v, 20% v/v dan 30% v/v
diikuti dengan proses pengeringan. Kajian konduktiviti menggunakan
EIS menunjukan bahawa sampel yang
terdop dengan asid mempunyai kekonduksian yang lebih tinggi berbanding sampel
tidak terdop. Kekonduksian tertinggi didapati pada 30% v/v (3.37 x 10-6
± 8.89 x 10-7 S/m). Analisis morfologi menggunakan FESEM menunjukkan
pengedaran PANI yang sekata pada permukaan kapas. Ini membuktikan penyerapan
PANI yang baik ke dalam kain. Selain itu, lebih banyak mendakan PANI didapati
pada permukaan kain apabila kepekatan asid dopan bertambah. Ini adalah selari
dengan hasil bacaan tahap kekonduksian elektrik.
Kata kunci: polianilina, fabrik
konduktif, fabrik, spektroskopi impedansi elektrokimia, mikroskop pengimbasan
pelepasan medan
References
1.
Ahmad, S., Sultan, A., Raza, W., Muneer, M. and Mohammad, F. (2016).
Preparation, characterization and application of polyaniline/silk fibroin
composite. Polymers and Polymer
Composites, 24(8): 633-642.
2.
Mirmohseni, A., Azizi, M. and Dorraji, M. S. (2020). Cationic graphene
oxide nanosheets intercalated with polyaniline nanofibers: A promising
candidate for simultaneous anticorrosion, antistatic, and antibacterial
applications. Progress in Organic Coatings, 139: 105419.
3.
Ma, Z., Shi, W., Yan, K., Pan, L. and Yu, G. (2019). Doping engineering
of conductive polymer hydrogels and their application in advanced sensor
technologies. Chemical Science,
10(25): 6232-6244.
4.
Mawad, D., Mansfield, C., Lauto, A., Perbellini, F., Nelson, G. W.,
Tonkin, J. and Stevens, M. M. (2016). A conducting polymer with enhanced
electronic stability applied in cardiac models. Science Advances, 2(11): e1601007.
5.
Mahat, M. M., Mawad, D., Nelson, G. W., Fearn, S., Palgrave, R. G.,
Payne, D. J. and Stevens, M. M. (2015). Elucidating the deprotonation of
polyaniline films by X-ray photoelectron spectroscopy. Journal of Materials Chemistry C, 3(27): 7180-7186.
6.
Yang, Y., Chen, S. and Xu, L. (2011). Enhanced conductivity of
polyaniline by conjugated crosslinking. Macromolecular
Rapid Communications, 32(7): 593-597.
7. Noby, H., El-Shazly,
A., Elkady, M. and Ohshima, M. (2019). Strong acid doping for the preparation of conductive polyaniline
nanoflowers, nanotubes, and nanofibers. Polymer, 182: 121848.
8.
Ansari, M. O., Khan, M. M., Ansari, S. A., Amal, I., Lee, J. and Cho,
M. H. (2014). pTSA doped conducting
graphene/polyaniline nanocomposite fibers: Thermoelectric behavior and
electrode analysis. Chemical Engineering
Journal, 242: 155-161.
9.
Price, A. D. and Naguib, H. E. (2008).
Synthesis and characterization of porous polyaniline conductive
polymers. Cellular Polymers, 27(3):
201-212.
10.
Aggadi, S. E., Loudiyi, N., Chadil, A., Abbassi, Z. E. and Hourch, A. E.
(2020). Electropolymerization of aniline monomer and effects of synthesis
conditions on the characteristics of synthesized polyaniline thin films. Mediterranean
Journal of Chemistry, 10(2): 138-145.
11.
Taş, R., Can, M. and Sarı, H. (2019). The chemical synthesis
and characterizations of silver-doped polyaniline: Role of silver–solvent
interactions. Polymer Bulletin, 77(4): 1913-1928.
12.
Boeva, Z. A. and Sergeyev, V. G. (2014). Polyaniline: Synthesis,
properties, and application. Polymer
Science Series C, 56(1): 144-153.
13.
Ramli, R., Arawi, A. Z., Mahat, M. M., Mohd., A. F. and Yahya, M. F.
(2011). Effect of silver (Ag) substitution nano-hydroxyapatite synthesis by
microwave processing. 2011 International
Conference on Business, Engineering and Industrial Applications, Kuala Lumpur: pp. 180-183
14.
Ramli, J., Jeefferie, A. R. and Mahat, M. M. (2011). Effects of UV
curing exposure time to the mechanical and physical properties of the epoxy and
vinyl ester fiber glass laminates composites, ARPN Journal of Engineering and
Applied Sciences, 6(4): 104-109.
15.
Sharma, S., Kumar, V., Pathak, A. K., Yokozeki, T., Yadav, S. K.,
Singh, V. N. and Singh, B. P. (2018). Design of MWCNT bucky paper reinforced
PANI–DBSA–DVB composites with superior electrical and mechanical properties. Journal of Materials Chemistry C,
6(45): 12396.
16.
Wu, L., Ge, Y., Zhang, L., Yu, D., Wu, M. and Ni, H. (2018). Enhanced electrical
conductivity and competent mechanical properties of polyaniline/polyacrylate
(PANI/PA) composites for antistatic finishing prepared at the aid of polymeric
stabilizer. Progress in Organic Coatings,
125: 99-108.
17.
Humpolíček, P., Radaszkiewicz, K. A., Capáková, Z., Pacherník, J.,
Bober, P., Kašpárková, V. and Stejskal, J. (2018). Polyaniline cryogels:
Biocompatibility of novel conducting macroporous material. Scientific Reports, 8(1): 135.
18.
Aizamddin, M. F., Roslan, N. C., Kamaruddin, M. A., Omar, S. N.,
Safian, M. F., Abdul Halim, M. I. and Mahat, M. M. (2020). Study of
conductivity and thermal properties of polyaniline doped with p-toluene sulfonic acid. Malaysian Journal of Analytical Sciences,
24(3): 413-421.
19. Hao, L., Wang, R.,
Fang, K. and Cai, Y. (2017). The modification of cotton substrate using
chitosan for improving its dyeability towards anionic microencapsulated
nano-pigment particles. Industrial Crops and Products, 95: 348-356.
20.
Liu, Y., Zhao, X., Tuo, X. (2016). Preparation of polypyrrole coated
cotton conductive fabrics. The Journal of
the Textile Institute, 108(5): 829-834.
21.
Cruz-Pacheco, A. F., Paredes-Madrid, L., Orozco, J., Gómez-Cuaspud, J.
A., Batista-Rodríguez, C. R. and Gómez, C. A. (2020). Assessing the influence
of the sourcing voltage on polyaniline composites for stress sensing
applications. Polymers, 12(5): 1164.
22.
Omar, S. N., Ariffin, Z. Z., Zakaria, A., Safian, M. F., Halim, M. I.,
Ramli, R., Mahat, M. M. (2020). Electrically conductive fabric coated with
polyaniline: Physicochemical characterisation and antibacterial assessment. Emergent Materials, 3: 469-477.
23.
Tang, S. J., Wang, A. T., Lin, S. Y., Huang, K. Y., Yang, C. C., Yeh,
J. M. and Chiu, K. C. (2011). Polymerization of aniline under various
concentrations of APS and HCl. Polymer
Journal, 43(8): 667-675.
24.
Paschoalin, R. T., Steffens, C., Manzoli, A., Paris, E. C. and Herrmann,
P. S. (2012). PANI conductivity: A dependence of the chemical synthesis
temperature. Macromolecular Symposia,
319(1): 48-53.
25.
Karaoğlan, N. and Bindal, C. (2018). Synthesis and optical
characterization of benzene sulfonic acid doped polyaniline. Engineering Science and Technology, an
International Journal, 21(6): 1152-1158.
26.
Wang, Y., Chen, K., Li, T. and Li, H. (2015). One-step and
template-free synthesis of itaconic acid–doped polyaniline nanorods in aqueous
solution. High Performance Polymers, 28(3): 322-330.
27.
Ziadan, K. (2016). Study of the electrical characteristics of
polyaniline prepared by electrochemical polymerization. Energy Procedia, 19(2012): 71-79.
28.
Alamer, F. A. (2018). Structural and electrical properties of
conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose, 25(3): 2075–2082.
29.
Omar, S., Ariffin, Z., Akhir, R., Shri, D., Halim, M., Safian, M. and Mahat,
M. (2019). Polyaniline (PANI) fabric doped p-toluene
sulfonic acid (pTSA) with anti-infection properties. Materials Today: Proceedings, 16: 1994-2002.
30.
Mostafaei, A. and Zolriasatein, A. (2012). Materials international
synthesis and characterization of conducting polyaniline nanocomposites
containing ZnO nanorods. Progress in
Natural Science: Materials International, 22(4): 273-280.
31.
Perumalraj, R. (2015). Electrical surface resistivity of polyaniline
coated woven fabrics. Journal of Textile Science
& Engineering. 5(3): 1-5.
32.
Wu, B., Zhang, B., Wu, J., Wang, Z., Ma, H. and Yu, M. (2015).
Electrical switchability and dry-wash durability of conductive textiles. Scientific Report, 5: 11255.