Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 682 - 697
ELECTRICAL AND INFRARED SPECTROSCOPIC ANALYSIS OF SOLID POLYMER
ELECTROLYTE BASED ON POLYETHYLENE OXIDE AND GRAPHENE OXIDE BLEND
(Kajian Elektrik dan Spektroskopik Inframerah
kepada Elektrolit Polimer Pepejal Campuran Polietilena Oksida dan Grafena
Oksida)
Ahmad
Syafiq Fauzan Mohd Asnawi1, Alyaa Amalina Mohd Azli2,
Muhamad Hafiz Hamsan2, Mohd
Fakhrul Zamani Abdul Kadir 3,Yuhanees Mohamed Yusof 1*
1Chemical Engineering Section,
Universiti
Kuala Lumpur, Malaysian Institute of Chemical & Bioengineering Technology,
78000 Alor Gajah, Malacca, Malaysia
2Institute of Graduate Studies
3Centre for Foundation Studies in Science
University
of Malaya, 50603 Kuala Lumpur, Malaysia
*Corresponding author: yuhanees@unikl.edu.my
Received: 30 March 2020;
Accepted: 21 August 2020; Published: 12 October 2020
Abstract
Poly(ethylene oxide) (PEO), polyvinyl alcohol
(PVA), and poly(ethylene carbonate) are synthetic polymers that have been
widely used as polymer host in solid polymer electrolyte (SPE). A proton
source, for example, lithium triflate (LiCF3SO3),
ammonium bromide (NH4Br), and ammonium fluoride (NH4F)
are doped in the polymer blend to provide the mobile Li+ or H+
ions. Polymer blending has been introduced to improve the properties of SPEs
due to the easy preparation and excellent physical properties. In the present
work, SPEs hosted by poly(ethylene oxide) (PEO) - graphene oxide (GO) blend
doped with ammonium triflate (NH4CF3SO3) has
been prepared via solution casting technique. The highest room
temperature conductivity of the PEO-GO polymer electrolytes containing 35 wt.%
NH4CF3SO3 was found to be (2.48 ± 0.83) × 10-6
S cm-1. This conductivity is
comparable to our previous work for the system of PEO-GO-LiCF3SO3
at (3.84 ± 0.83) × 10-6 S cm-1. Fourier
transmission infrared (FTIR) analysis exhibits the complexation between
ammonium salt and polymer host. The FTIR spectra have been deconvoluted in the
wavenumber region between 1010 and 1100 cm-1 to determine the
percentage of free triflate ion and ion aggregations. The results show that the
number of free ions increases and attains maximum at 35 wt.% NH4CF3SO3.
The relaxation time of the electrolytes was found to decrease as the ionic
conductivity at room temperature increased. Dielectric studies show that all
electrolytes obeyed non-Debye behavior.
Keywords: polymer
electrolyte, PEO-GO blend, ammonium triflate, ionic conductivity, dielectric
constant
Abstrak
Poli(etilena oksida) (
Kata kunci: elektrolit
polimer, campuran PEO-GO, amonium triflate, kekonduksian ionik, pemalar dielektrik
References
1. Syzdek, J., Armand, M., Marcinek, M., Zalewska, A.,
Zukowska, G. and Wieczorek, W. (2010). Detailed studies on the fillers
modification and their influence on composite, poly(oxyethylene)-based
polymeric electrolytes. Electrochima Acta, 55 (4): 1314-1322.
2. Zainol, N. H., Osman, Z., Othman, L. and Md. Isa, K.
B. (2013). Transport and morphological properties of gel polymer electrolytes
containing Mg(CF3SO3)2. Advanced Material
Research, 686: 137-144.
3. Isa, K. B. M. (2013). Magnesium ion-based gel polymer
electrolytes: Ionic conduction and infrared spectroscopy studies. International
Journal of Electrochemical Science, 8(3): 3602-3614.
4. Buraidah, M. H., Shah, S., Teo, L. P., Chowdhury, F. I., Careem, M.
A., Albinsson, I., Mellander, B. E. and Arof, A. K. (2017). High efficient dye sensitized solar cells
using phthaloylchitosan based gel polymer electrolytes. Electrochima Acta,
245: 846-853.
5. Riess, I. (2000). Polymeric mixed ionic electronic
conductors. Solid State Ionics, 136-137: 1119-1130.
6. Gong, S. D., Huang, Y., Cao, H. J., Lin, Y. H., Li,
Y., Tang, S. H., Wang, M. S. and Li, X. (2016). A green and
environment-friendly gel polymer electrolyte with higher performances based on
the natural matrix of lignin. Journal of Power Sources, 307: 624-633.
7. Yusof, Y. M., Shukur, M. F., Illias, H. A. and
Kadir, M. F. Z. (2014). Conductivity and electrical properties of corn
starch-chitosan blend biopolymer electrolyte incorporated with ammonium iodide.
Physica Scripta, 89(3): 1-10.
8. Parameswaran, V., Nallamuthu, N., Devendran, P.,
Nagarajan, E. R. and Manikandan, A. (2017). Electrical conductivity studies on
ammonium bromide incorporated with zwitterionic polymer blend electrolyte for
battery application. Physica B: Condensed Matter, 515: 89-98.
9. Bakar, N. Y. A., Muhamaruesa, N. H. M., Aniskari, N.
A. B. and Isa, M. I. N. M. (2015). Electrical studies of carboxy
methycellulose-chitosan blend biopolymer doped dodecyltrimethyl ammonium
bromide solid electrolytes. American Journal of Applied Science, 12(1):
40-46.
10. MacGlashan, G. S. and Andreev, Y. G. (1999).
Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6.
Nature, 398: 792-794.
11. Karan, N. K., Pradhan, O. K., Thomas, R., Natesan,
B. and Katiyar, R. S. (2008). Solid polymer electrolytes based on polyethylene
oxide and lithium trifluoro-methane sulfonate (PEO-LiCF3SO3):
Ionic conductivity and dielectric relaxation. Solid State Ionics, 179
(19-20): 689-696.
12. Utpalla, P., Sharma, S. K., Sudarshan, K., Sahu, M.
and Pujari, P. K. (2019). Investigation of the free volume characteristics of PEO
based solid state polymer electrolyte by means of positron annihilation spectroscopy.
Solid State Ionics, 339(May): 114990.
13. Pitawala, H. M. J. C., Dissanayake, M. A. K. L. and
Seneviratne, V. A. (2007). Combined effect of Al2O3 nano-fillers
and EC plasticizer on ionic conductivity enhancement in the solid polymer
electrolyte (PEO)9LiTf. Solid State Ionics, 178 (13-14): 885-888.
14. Mohanta, J., Padhi, D. K. and Si, S. (2018). Li-ion conductivity
in PEO-graphene oxide nanocomposite polymer electrolytes: A study on effect of
the counter anion. Journal of Applied Polymer Science, 135 (22): 1-10.
15. Mahmoud, W. E. (2011). Morphology and physical
properties of poly(ethylene oxide) loaded graphene nanocomposites prepared by
two different techniques. European Polymer Journal, 47(8): 1534-1540.
16. Cano, M., Khan, U., Sainsbury, T., O'Neill, A., Wang, Z.,
McGovern, I. T., Maser, W. K., Benito, A. M. and Coleman, J. N. (2013). Improving the mechanical properties of
graphene oxide based materials by covalent attachment of polymer chains. Carbon,
52: 363-371.
17. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J.
R. And Ruoff, R. S. (2010).
Graphene and graphene oxide: synthesis, properties, and applications. Advanced
Materials, 22(35): 3906-3924.
18. Anuar, N. K., Subban, R. H. Y. and Mohamed, N. S.
(2012). Properties of PEMA-NH4CF3SO3 added to
BMATSFI ionic liquid. Materials, 5(12): 2609-2620.
19. Kadir, M. F. Z., Majid, S. R. and Arof, A. K.
(2010). Plasticized chitosan-PVA blend polymer electrolyte based proton
battery. Electrochima Acta, 55(4): 1475-1482.
20. Sohaimy, M. I. H. and Isa, M. I. N. (2015).
Conductivity and dielectric analysis of cellulose based solid polymer
electrolytes doped with ammonium carbonate (NH4CO3). Applied
Mechanics and Materials, 719-720: 67-72.
21. Rodi, I., Saaid, F. and Winie, T. (2017). PEMA-LiCF3SO3
Polymer electrolytes: Assessment of conductivity and transport properties. AIP
Conference Proceedings, 1877 (September): 060003.
22. Azli, A. A., Manan, N. S. A. and Kadir, M. F. Z.
(2015). Conductivity and dielectric studies of lithium
trifluoromethanesulfonate doped polyethylene oxide-graphene oxide blend based
electrolytes. Advanced in Materials Science and Engineering, 2015: 1-10.
23. Hummers, W. S. and Offeman, R. E. (1958).
Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6):
1339.
24. Hamdan, K. Z. and Khiar, A. S. A. (2013).
Conductivity and dielectric studies of methylcellulose/chitosan-NH4CF3SO3
polymer electrolyte. Key Engineering Materials, 594-595(3): 818-822.
25. Mobarak, N. N., Ramli, N., Abdullah, M. P. and
Ahmad, A. (2013). Spectroscopic Studies of carboxymethyl chitosan-ammonium
triflate (NH4CF3SO3) based solid polymer
electrolytes. AIP Conference Proceedings, 1571 (December 2013): 843-849.
26. Samsudin, A. S., Khairul, W. M. and Isa, M. I. N.
(2012). Characterization on the potential of carboxy methylcellulose for
application as proton conducting biopolymer electrolytes. Journal of
Non-Crystalline Solids, 358(8): 1104-1112.
27. Rathika, R., Padmaraj, O. and Suthanthiraraj, S. A.
(2018). Electrical conductivity and dielectric relaxation behaviour of PEO/PVdF-based
solid polymer blend electrolytes for zinc battery applications. Ionics,
24(1): 243-255.
28. Karan, S., Sahu, T. B., Sahu, M., Mahipal, Y. K. and
Agrawal, R. C. (2017). Characterization of ion transport property in hot-press
cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)2].
Ionics, 23 (10): 2721-2726.
29. Kumar, K. K., Ravi, M., Pavani, Y., Bhavani, S. Sharma, A. K. and
Narasimha Rao, V. V. R.
(2014). Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for
electrochemical cell applications. Journal of Membrane Science, 454: 200-211.
30. Ramesh, S., Yuen, T. F. and Shen, C. J. (2008).
Conductivity and FTIR Studies on PEO-LiX [X: CF3SO3-,
SO42-] polymer electrolytes. Spectrochimica Acta -
Part A: Molecular and Biomolecular Spectroscopy, 69 (2): 670-675.
31. Asmara, S. N., Kufian, M. Z., Majid, S.R. and Arof,
A. K. (2011). Preparation and characterization of magnesium ion gel polymer
electrolytes for application in electrical double layer capacitors. Electrochimica
Acta, 57(1): 91-97.
32. Wendsjö, Å., Thomas, J. O. and Lindgren, J. (1993).
Infra-red and X-ray diffraction study of the hydration process in the polymer
electrolyte system M(CF3SO3)2PEOn
for M=Pb, Zn and Ni. Polymer, 34 (11): 2243-2249.
33. Navaratnam, S., Ramesh, K., Ramesh, S., Sanusi, A., Basirun, W. J. and
Arof, A. K. (2015).
Transport mechanism studies of chitosan electrolyte systems. Electrochimica
Acta, 175: 68-73.
34. Johan, M. R., Shy, O. H., Ibrahim, S., Yassin, S. M.
M. and Hui, T. Y. (2011). Effects of Al2O3 nanofiller and
EC plasticizer on the ionic conductivity enhancement of solid PEO-LiCF3SO3
solid polymer electrolyte. Solid State Ionics, 196 (1): 41-47.
35. Bergstroem, P. A. and Frech, R. (2005). Raman and
infrared study of the polymer electrolytes formed by poly(propylene oxide) with
Sn(CF3SO3)2 and Pb(CF3SO3)2.
Journal of Physical Chemistry, 99(33): 12603-12611.
36. Bernson, A. and Llndgren, J. (1993). Free ions and
ion pairing/clustering in the system LiCF3SO3-PPO. Solid
State Ionics, 60: 37-41.
37. Aniskari, N. A. B. and Mohd Isa, M. I. N. (2017).
The effect of ionic charge carriers in 2-hydroxyethyl cellulose solid
biopolymer electrolytes doped glycolic acid via FTIR-deconvolution technique.
Journal of Sustainability Science and Management, 12(2): 71-79.
38. Ahmed, H. T. and Abdullah, O. G. (2019). Preparation
and composition optimization of PEO: MC polymer blend films to enhance
electrical conductivity. Polymers, 11 (5): 1-18.
39. MacFarlane, D. R., Meakin, P., Bishop, A.,
McNaughton, D., Rosalie, J. M. and Forsyth, M. (1995). FTIR study of
ion-pairing effects in plasticized polymer electrolytes. Electrochimica
Acta, 40 (13-14): 2333-2337.
40. Karan, S., Sahu, M., Sahu, T. B., Mahipal, Y. K.,
Sahu, D. K. and Agrawal R. C. (2017). Investigations on materials and ion
transport properties of Zn2+ conducting nano-composite polymer
electrolytes (NCPEs): [(90 PEO: 10 Zn(CF3SO3)2)+
x ZnO]. Materials Today Communications, 13: 269-274.
41. Kamisan, A. S., Kudin, T. I. T., Ali, A. M. M. and
Yahya, M. Z. A. (2011). Polymer gel electrolytes based on 49% methyl-grafted
natural rubber. Sains Malaysiana, 40 (1): 49-54.
42. Arof, A. K., Amirudin, S., Yusof, S. Z. and Noor, I.
M. (2014). A method based on impedance spectroscopy to determine transport
properties of polymer electrolytes. Physical Chemistry Chemical Physics,
16 (5): 1856-1867.
43. Woo, H. J., Majid, S. R. and Arof, A. K. (2011).
Conduction and thermal properties of a proton conducting polymer electrolyte
based on poly(ε-caprolactone). Solid State Ionics, 199-200 (1): 14-20.
44. Ramlli, M. A. and Isa, M. I. N. (2016). Structural and
ionic transport properties of protonic conducting solid biopolymer electrolytes
based on carboxymethyl cellulose doped with ammonium fluoride. Journal of
Physical Chemistry B, 120(44): 11567-11573.
45. Kadir, M. F. Z. and Hamsan, M. H. (2018). Green electrolytes
based on dextran-chitosan blend and the effect of NH4SCN as proton
provider on the electrical response studies. Ionics, 24 (8): 2379-2398.
46. Marzantowicz, M., Dygas, J. R., Krok, F., Florjańczyk, Z. and
Zygadło-Monikowska, E.
(2006). Influence of crystallization on dielectric properties of PEO:LiTFSI polymer
electrolyte. Journal of Non-Crystalline Solids, 352(42-49): 5216-5223.
47. Khiar, A. S. A. and Arof, A. K. (2011). Electrical properties
of starch/chitosan-NH4NO3 polymer electrolyte. International
Journal of Physical and Mathematical Sciences, 5 (11): 23-27.
48. Shukur, M. F., Ithnin, R. and Kadir, M. F. Z.
(2016). Ionic conductivity and dielectric properties of potato starch-magnesium
acetate biopolymer electrolytes: The effect of glycerol and 1-butyl-3-methylimidazolium
chloride. Ionics, 22 (7): 1113-1123.
49. Ramly, K., Isa, M. I. N. and Khiar, A. S. A. (2011).
Conductivity and dielectric behaviour studies of starch/PEO + x wt-% NH4NO3
polymer electrolyte. Materials Research Innovations, 15(2): 82-85.
50. Pawlicka, A., Tavares, F. C., Dörr, D. S., Cholant, C. M., Ely, F.,
Santos, M. J. L. and Avellaneda, C. O. (2019). Dielectric behavior and FTIR Studies of xanthan gum-based solid
polymer electrolytes. Electrochimica Acta, 305: 232-239.
51. Woo, H. J., Majid, S. R. and Arof, A. K. (2012).
Dielectric properties and morphology of polymer electrolyte based on
poly(ε-caprolactone) and ammonium thiocyanate. Materials Chemistry and
Physics, 134 (2-3): 755-761.
52. Gohel, K. and Kanchan, D. K. (2018). Ionic conductivity
and relaxation studies in PVDF-HFP:PMMA-based gel polymer blend electrolyte with
LiClO4 salt. Journal of Advanced Dielectrics, 8(1): 1850005.
53. Idris, N. H., Senin, H. B. and Arof, A. K. (2007).
Dielectric spectra of LiTFSI-doped chitosan/PEO blends. Ionics, 13(4):
213-217.