Malaysian Journal of Analytical Sciences Vol 24 No 5 (2020): 682 - 697

 

 

 

 

ELECTRICAL AND INFRARED SPECTROSCOPIC ANALYSIS OF SOLID POLYMER ELECTROLYTE BASED ON POLYETHYLENE OXIDE AND GRAPHENE OXIDE BLEND

 

(Kajian Elektrik dan Spektroskopik Inframerah kepada Elektrolit Polimer Pepejal Campuran Polietilena Oksida dan Grafena Oksida)

 

Ahmad Syafiq Fauzan Mohd Asnawi1, Alyaa Amalina Mohd Azli2, Muhamad Hafiz Hamsan2, Mohd Fakhrul Zamani Abdul Kadir 3,Yuhanees Mohamed Yusof 1*

 

1Chemical Engineering Section,

Universiti Kuala Lumpur, Malaysian Institute of Chemical & Bioengineering Technology, 78000 Alor Gajah, Malacca, Malaysia

2Institute of Graduate Studies

3Centre for Foundation Studies in Science

University of Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author: yuhanees@unikl.edu.my

 

 

Received: 30 March 2020; Accepted: 21 August 2020; Published: 12 October 2020

 

 

Abstract

Poly(ethylene oxide) (PEO), polyvinyl alcohol (PVA), and poly(ethylene carbonate) are synthetic polymers that have been widely used as polymer host in solid polymer electrolyte (SPE). A proton source, for example, lithium triflate (LiCF3SO3), ammonium bromide (NH4Br), and ammonium fluoride (NH4F) are doped in the polymer blend to provide the mobile Li+ or H+ ions. Polymer blending has been introduced to improve the properties of SPEs due to the easy preparation and excellent physical properties. In the present work, SPEs hosted by poly(ethylene oxide) (PEO) - graphene oxide (GO) blend doped with ammonium triflate (NH4CF3SO3) has been prepared via solution casting technique. The highest room temperature conductivity of the PEO-GO polymer electrolytes containing 35 wt.% NH4CF3SO3 was found to be (2.48 ± 0.83) × 10-6 S cm-1.  This conductivity is comparable to our previous work for the system of PEO-GO-LiCF3SO3 at (3.84 ± 0.83) × 10-6 S cm-1. Fourier transmission infrared (FTIR) analysis exhibits the complexation between ammonium salt and polymer host. The FTIR spectra have been deconvoluted in the wavenumber region between 1010 and 1100 cm-1 to determine the percentage of free triflate ion and ion aggregations. The results show that the number of free ions increases and attains maximum at 35 wt.% NH4CF3SO3. The relaxation time of the electrolytes was found to decrease as the ionic conductivity at room temperature increased. Dielectric studies show that all electrolytes obeyed non-Debye behavior.

 

Keywords:  polymer electrolyte, PEO-GO blend, ammonium triflate, ionic conductivity, dielectric constant

 

Abstrak

Poli(etilena oksida) (PEO), polivinil alkohol (PVA), dan poli(etilena karbonat) merupakan polimer sintetik yang banyak digunakan sebagai polimer asas dalam elektrolit polimer pepejal (SPE). Sebagai sumber proton seperti litium triflate (LiCF3SO3), amonium bromida (NH4Br), dan amonium fluorida (NH4F) ditambah ke dalam campuran polimer untuk memberi ion Li+ atau H+. Pengadun polimer telah diperkenalkan untuk meningkatkan sifat-sifat SPE kerana penyediaannya yang mudah dan sifat fizikal yang sangat baik. Dalam kajian ini, SPE yang berasaskan campuran poli (etilena oksida) (PEO) - grafena oksida (GO) yang dengan tambahan amonium triflate (NH4CF3SO3) telah disediakan melalui teknik pengacuan larutan. Kekonduksian pada suhu bilik tertinggi ialah bagi elektrolit polimer PEO-GO yang mengandungi 35% berat NH4CF3SO3 iaitu pada (2.48 ± 0.83) × 10-6 S cm-1. Kekonduksian ini adalah setanding dengan kajian kami sebelum ini bagi sistem PEO-GO-LiCF3SO3 pada (3.84 ± 0.83) × 10-6 S cm-1. Analisis spektrometer inframerah (FTIR) mempamerkan kompleks antara garam ammonium dan polimer asas. Spektrum FTIR telah didikonvolutkan di antara 1010 dan 1100 cm-1 untuk menentukan peratusan agregat ion dan ion triflat bebas. Keputusan menunjukkan bahawa bilangan ion bebas meningkat dan mencapai maksimum pada 35% berat NH4CF3SO3. Masa kelonggaran elektrolit didapati berkurangan apabila kekonduksian ionik meningkat pada suhu bilik. Kajian dielektrik menunjukkan bahawa semua elektrolit mematuhi tingkah laku bukan Debye.

 

Kata kunci:  elektrolit polimer, campuran PEO-GO, amonium triflate, kekonduksian ionik, pemalar dielektrik

 

References

1.      Syzdek, J., Armand, M., Marcinek, M., Zalewska, A., Zukowska, G. and Wieczorek, W. (2010). Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytes. Electrochima Acta, 55 (4): 1314-1322.

2.      Zainol, N. H., Osman, Z., Othman, L. and Md. Isa, K. B. (2013). Transport and morphological properties of gel polymer electrolytes containing Mg(CF3SO3)2. Advanced Material Research, 686: 137-144.

3.      Isa, K. B. M. (2013). Magnesium ion-based gel polymer electrolytes: Ionic conduction and infrared spectroscopy studies. International Journal of Electrochemical Science, 8(3): 3602-3614.

4.      Buraidah, M. H., Shah, S., Teo, L. P., Chowdhury, F. I., Careem, M. A., Albinsson, I., Mellander, B. E. and Arof, A. K. (2017). High efficient dye sensitized solar cells using phthaloylchitosan based gel polymer electrolytes. Electrochima Acta, 245: 846-853.

5.      Riess, I. (2000). Polymeric mixed ionic electronic conductors. Solid State Ionics, 136-137: 1119-1130.

6.      Gong, S. D., Huang, Y., Cao, H. J., Lin, Y. H., Li, Y., Tang, S. H., Wang, M. S. and Li, X. (2016). A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. Journal of Power Sources, 307: 624-633.

7.      Yusof, Y. M., Shukur, M. F., Illias, H. A. and Kadir, M. F. Z. (2014). Conductivity and electrical properties of corn starch-chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Physica Scripta, 89(3): 1-10.

8.      Parameswaran, V., Nallamuthu, N., Devendran, P., Nagarajan, E. R. and Manikandan, A. (2017). Electrical conductivity studies on ammonium bromide incorporated with zwitterionic polymer blend electrolyte for battery application. Physica B: Condensed Matter, 515: 89-98.

9.      Bakar, N. Y. A., Muhamaruesa, N. H. M., Aniskari, N. A. B. and Isa, M. I. N. M. (2015). Electrical studies of carboxy methycellulose-chitosan blend biopolymer doped dodecyltrimethyl ammonium bromide solid electrolytes. American Journal of Applied Science, 12(1): 40-46.

10.   MacGlashan, G. S. and Andreev, Y. G. (1999). Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6. Nature, 398: 792-794.

11.   Karan, N. K., Pradhan, O. K., Thomas, R., Natesan, B. and Katiyar, R. S. (2008). Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO-LiCF3SO3): Ionic conductivity and dielectric relaxation. Solid State Ionics, 179 (19-20): 689-696.

12.   Utpalla, P., Sharma, S. K., Sudarshan, K., Sahu, M. and Pujari, P. K. (2019). Investigation of the free volume characteristics of PEO based solid state polymer electrolyte by means of positron annihilation spectroscopy. Solid State Ionics, 339(May): 114990.

13.   Pitawala, H. M. J. C., Dissanayake, M. A. K. L. and Seneviratne, V. A. (2007). Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf. Solid State Ionics, 178 (13-14): 885-888.

14.   Mohanta, J., Padhi, D. K. and Si, S. (2018). Li-ion conductivity in PEO-graphene oxide nanocomposite polymer electrolytes: A study on effect of the counter anion. Journal of Applied Polymer Science, 135 (22): 1-10.

15.   Mahmoud, W. E. (2011). Morphology and physical properties of poly(ethylene oxide) loaded graphene nanocomposites prepared by two different techniques. European Polymer Journal, 47(8): 1534-1540.

16.   Cano, M., Khan, U., Sainsbury, T., O'Neill, A., Wang, Z., McGovern, I. T., Maser, W. K., Benito, A. M. and Coleman, J. N. (2013). Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon, 52: 363-371.

17.   Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R. And Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 22(35): 3906-3924.

18.   Anuar, N. K., Subban, R. H. Y. and Mohamed, N. S. (2012). Properties of PEMA-NH4CF3SO3 added to BMATSFI ionic liquid. Materials, 5(12): 2609-2620.

19.   Kadir, M. F. Z., Majid, S. R. and Arof, A. K. (2010). Plasticized chitosan-PVA blend polymer electrolyte based proton battery. Electrochima Acta, 55(4): 1475-1482.

20.   Sohaimy, M. I. H. and Isa, M. I. N. (2015). Conductivity and dielectric analysis of cellulose based solid polymer electrolytes doped with ammonium carbonate (NH4CO3). Applied Mechanics and Materials, 719-720: 67-72.

21.   Rodi, I., Saaid, F. and Winie, T. (2017). PEMA-LiCF3SO3 Polymer electrolytes: Assessment of conductivity and transport properties. AIP Conference Proceedings, 1877 (September): 060003.

22.   Azli, A. A., Manan, N. S. A. and Kadir, M. F. Z. (2015). Conductivity and dielectric studies of lithium trifluoromethanesulfonate doped polyethylene oxide-graphene oxide blend based electrolytes. Advanced in Materials Science and Engineering, 2015: 1-10.

23.   Hummers, W. S. and Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6): 1339.

24.   Hamdan, K. Z. and Khiar, A. S. A. (2013). Conductivity and dielectric studies of methylcellulose/chitosan-NH4CF3SO3 polymer electrolyte. Key Engineering Materials, 594-595(3): 818-822.

25.   Mobarak, N. N., Ramli, N., Abdullah, M. P. and Ahmad, A. (2013). Spectroscopic Studies of carboxymethyl chitosan-ammonium triflate (NH4CF3SO3) based solid polymer electrolytes. AIP Conference Proceedings, 1571 (December 2013): 843-849.

26.   Samsudin, A. S., Khairul, W. M. and Isa, M. I. N. (2012). Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. Journal of Non-Crystalline Solids, 358(8): 1104-1112.

27.   Rathika, R., Padmaraj, O. and Suthanthiraraj, S. A. (2018). Electrical conductivity and dielectric relaxation behaviour of PEO/PVdF-based solid polymer blend electrolytes for zinc battery applications. Ionics, 24(1): 243-255.

28.   Karan, S., Sahu, T. B., Sahu, M., Mahipal, Y. K. and Agrawal, R. C. (2017). Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)2]. Ionics, 23 (10): 2721-2726.

29.   Kumar, K. K., Ravi, M., Pavani, Y., Bhavani, S. Sharma, A. K. and Narasimha Rao, V. V. R. (2014). Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. Journal of Membrane Science, 454: 200-211.

30.   Ramesh, S., Yuen, T. F. and Shen, C. J. (2008). Conductivity and FTIR Studies on PEO-LiX [X: CF3SO3-, SO42-] polymer electrolytes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 69 (2): 670-675.

31.   Asmara, S. N., Kufian, M. Z., Majid, S.R. and Arof, A. K. (2011). Preparation and characterization of magnesium ion gel polymer electrolytes for application in electrical double layer capacitors. Electrochimica Acta, 57(1): 91-97.

32.   Wendsjö, Å., Thomas, J. O. and Lindgren, J. (1993). Infra-red and X-ray diffraction study of the hydration process in the polymer electrolyte system M(CF3SO3)2PEOn for M=Pb, Zn and Ni. Polymer, 34 (11): 2243-2249.

33.   Navaratnam, S., Ramesh, K., Ramesh, S., Sanusi, A., Basirun, W. J. and Arof, A. K. (2015). Transport mechanism studies of chitosan electrolyte systems. Electrochimica Acta, 175: 68-73.

34.   Johan, M. R., Shy, O. H., Ibrahim, S., Yassin, S. M. M. and Hui, T. Y. (2011). Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO-LiCF3SO3 solid polymer electrolyte. Solid State Ionics, 196 (1): 41-47.

35.   Bergstroem, P. A. and Frech, R. (2005). Raman and infrared study of the polymer electrolytes formed by poly(propylene oxide) with Sn(CF3SO3)2 and Pb(CF3SO3)2. Journal of Physical Chemistry, 99(33): 12603-12611.

36.   Bernson, A. and Llndgren, J. (1993). Free ions and ion pairing/clustering in the system LiCF3SO3-PPO. Solid State Ionics, 60: 37-41.

37.   Aniskari, N. A. B. and Mohd Isa, M. I. N. (2017). The effect of ionic charge carriers in 2-hydroxyethyl cellulose solid biopolymer electrolytes doped glycolic acid via FTIR-deconvolution technique. Journal of Sustainability Science and Management, 12(2): 71-79.

38.   Ahmed, H. T. and Abdullah, O. G. (2019). Preparation and composition optimization of PEO: MC polymer blend films to enhance electrical conductivity. Polymers, 11 (5): 1-18.

39.   MacFarlane, D. R., Meakin, P., Bishop, A., McNaughton, D., Rosalie, J. M. and Forsyth, M. (1995). FTIR study of ion-pairing effects in plasticized polymer electrolytes. Electrochimica Acta, 40 (13-14): 2333-2337.

40.   Karan, S., Sahu, M., Sahu, T. B., Mahipal, Y. K., Sahu, D. K. and Agrawal R. C. (2017). Investigations on materials and ion transport properties of Zn2+ conducting nano-composite polymer electrolytes (NCPEs): [(90 PEO: 10 Zn(CF3SO3)2)+ x ZnO]. Materials Today Communications, 13: 269-274.

41.   Kamisan, A. S., Kudin, T. I. T., Ali, A. M. M. and Yahya, M. Z. A. (2011). Polymer gel electrolytes based on 49% methyl-grafted natural rubber. Sains Malaysiana, 40 (1): 49-54.

42.   Arof, A. K., Amirudin, S., Yusof, S. Z. and Noor, I. M. (2014). A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Physical Chemistry Chemical Physics, 16 (5): 1856-1867.

43.   Woo, H. J., Majid, S. R. and Arof, A. K. (2011). Conduction and thermal properties of a proton conducting polymer electrolyte based on poly(ε-caprolactone). Solid State Ionics, 199-200 (1): 14-20.

44.   Ramlli, M. A. and Isa, M. I. N. (2016). Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped with ammonium fluoride. Journal of Physical Chemistry B, 120(44): 11567-11573.

45.   Kadir, M. F. Z. and Hamsan, M. H. (2018). Green electrolytes based on dextran-chitosan blend and the effect of NH4SCN as proton provider on the electrical response studies. Ionics, 24 (8): 2379-2398.

46.   Marzantowicz, M., Dygas, J. R., Krok, F., Florjańczyk, Z. and Zygadło-Monikowska, E. (2006). Influence of crystallization on dielectric properties of PEO:LiTFSI polymer electrolyte. Journal of Non-Crystalline Solids, 352(42-49): 5216-5223.

47.   Khiar, A. S. A. and Arof, A. K. (2011). Electrical properties of starch/chitosan-NH4NO3 polymer electrolyte. International Journal of Physical and Mathematical Sciences, 5 (11): 23-27.

48.   Shukur, M. F., Ithnin, R. and Kadir, M. F. Z. (2016). Ionic conductivity and dielectric properties of potato starch-magnesium acetate biopolymer electrolytes: The effect of glycerol and 1-butyl-3-methylimidazolium chloride. Ionics, 22 (7): 1113-1123.

49.   Ramly, K., Isa, M. I. N. and Khiar, A. S. A. (2011). Conductivity and dielectric behaviour studies of starch/PEO + x wt-% NH4NO3 polymer electrolyte. Materials Research Innovations, 15(2): 82-85.

50.   Pawlicka, A., Tavares, F. C., Dörr, D. S., Cholant, C. M., Ely, F., Santos, M. J. L. and Avellaneda, C. O. (2019). Dielectric behavior and FTIR Studies of xanthan gum-based solid polymer electrolytes. Electrochimica Acta, 305: 232-239.

51.   Woo, H. J., Majid, S. R. and Arof, A. K. (2012). Dielectric properties and morphology of polymer electrolyte based on poly(ε-caprolactone) and ammonium thiocyanate. Materials Chemistry and Physics, 134 (2-3): 755-761.

52.   Gohel, K. and Kanchan, D. K. (2018). Ionic conductivity and relaxation studies in PVDF-HFP:PMMA-based gel polymer blend electrolyte with LiClO4 salt. Journal of Advanced Dielectrics, 8(1): 1850005.

53.   Idris, N. H., Senin, H. B. and Arof, A. K. (2007). Dielectric spectra of LiTFSI-doped chitosan/PEO blends. Ionics, 13(4): 213-217.