Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 636 - 648
LINKING OF SHOOTER AND SHOOTING: DETECTION
OF GUNSHOT RESIDUE ON SHOOTER’S HANDS USING MICROSCOPY AND SCANNING ELECTRON
MICROSCOPE-ENERGY DISPERSIVE X-RAY METHODS
(Perkaitan Antara Penembak dan Penembakan:
Pengesanan Sisa Tembakan pada Tangan Penembak Menggunakan Kaedah Mikroskop dan
Kaedah Mikroskop Pengimbas Elektron-Sebaran Sinaran-X Bertenaga)
Farah Ad-din Nordin1, 2, Ahmad Fahmi Lim Abdullah1,
Kah Haw Chang1*
1Forensic Science Programme, School of Health Sciences,
Universiti Sains
Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
2Criminalistic Section, Forensic Division,
Department of
Chemistry, Jalan Sultan, 46661 Petaling Jaya, Kuala Lumpur, Malaysia
*Corresponding
author: changkh@usm.my
Received: 10 March 2020;
Accepted: 5 August 2020; Published: 12 October 2020
Abstract
One important link in
the chain of proof during investigation of shooting cases is the evidence to
prove a person had fired a firearm, or somehow was connected with the firing
activity. Gunshot residues (GSR), particularly on shooter’s hand, could provide
significant aid in such investigation. Therefore, this study was aimed to
investigate the detection of GSR particles recovered from the hands of shooter
using two sampling methods, namely stubbing and swabbing, on the basis of the
types of firearms and ammunitions, as well as the varying sampling sites. By
considering lead, barium and antimony as the criterion to definitely confirm
the presence of GSR, the experimental results revealed that greater number of
GSR particles were shown in those samples subjected to firing by using revolver
with .38 SPL ammunition compared to semi-automatic pistol with 9 mm ammunition
(p = 0.034). Based on Kruskal-Wallis
test, there was no statistically significant association shown between the
sampling sites and number of GSR particles detected (p= 0.545 for semi-automatic pistol; p = 0.218 for revolver). All stub samples demonstrated positive
detection of GSR particles, but only one single characteristic GSR particle was
detected on swab samples. Further examination on the collection efficiency of
respective sampling methods demonstrated with no significant association between
the types of firearms and number of GSR particles detected from the respective
cartridge cases (p = 0.568). The
number of swabbing from spent cartridge case gave almost similar testing result
(p = 0.561). This study has
successfully detected the presence of GSR particles, which could serve as a
supporting evidence to relate a suspect to a shooting case. Although swabbing
has limited ability in recovering GSR samples from the hands of shooter, it is
useful whenever a stub is not available or to recover GSR particle from a place
where could not be reached by a stub to avoid the loss of trace particles.
Keywords: forensic science,
firearm, gunshot residue, stub, swab, shooter
Abstrak
Satu
perkaitan penting dalam rantaian bukti ketika penyiasatan kes penembakan adalah
bahan bukti yang dapat membuktikan seseorang individu telah melepaskan suatu
tembakan atau dikaitkan dengan aktiviti penembakan tersebut. Sisa tembakan
(GSR) yang lazimnya pada tangan penembak boleh memberikan bantuan bererti dalam
penyiasatan kes-kes sedemikian. Justeru, kajian ini bertujuan menyiasat
pengesanan zarah GSR yang dipulihkan daripada tangan penembak menggunakan dua
kaedah pensampelan, iaitu dengan puntung dan kesatan, berdasarkan jenis senjata
api dan amunisi serta pelbagai tapak pensampelan. Dengan mengambil kira
plumbum, barium dan antimoni sebagai kriteria untuk mengesahkan kehadiran GSR
secara jelas, keputusan eksperimen telah menunjukkan bahawa bilangan zarah GSR
yang lebih banyak telah ditunjukkan pada sampel-sampel yang ditembak
menggunakan revolver bersama dengan amunisi .38 SPL berbanding pistol
semi-automatik dengan amunisi 9 mm (p =
0.034). Berdasarkan ujian Kruskal-Wallis, tiada perkaitan statistik bererti
yang terbukti antara tapak-tapak pensampelan dan bilangan zarah GSR yang
dikesan (p = 0.545 bagi pistol
semi-automatik; p= 0.218 bagi
revolver). Kesemua sampel puntung menunjukkan pengesanan positif bagi zarah GSR
tetapi hanya satu zarah berciri GSR sahaja yang dikesan pada sampel kesatan.
Pemeriksaan seterusnya pada keberkesanan pengumpulan bagi kedua-dua kaedah
pensampelan tidak menunjukkan perkaitan yang bererti antara jenis senjata api
dan bilangan zarah GSR yang dikesan daripada kelongsong peluru masing-masing (p = 0.568). Bilangan kesatan daripada kelongsong
peluru tertembak memberikan keputusan yang lebih kurang sama (p = 0.561). Kajian ini telah berjaya
mengesan kehadiran zarah-zarah GSR yang boleh berfungsi sebagai bahan bukti
sokongan dalam mengaitkan seseorang suspek kepada suatu kes penembakan.
Sungguhpun kaedah kesatan mempunyai kekangan dalam memulihkan sampel GSR
daripada tangan penembak, kaedah ini adalah berguna apabila suatu puntung tidak
tersedia atau untuk memulihkan zarah GSR daripada sesuatu tempat tidak dapat
dicapai oleh sesuatu puntung demi mengelakkan kehilangan zarah-zarah surih.
Kata kunci: sains forensik, senjata
api, sisa tembakan, puntung, kesatan, penembak
References
1.
SWGGSR
(2011). Guide for primer gunshot residue analysis by scanning electron
microscopy/energy dispersive X‐ray spectrometry. Scientific Working Group
for Gunshot Residue, Cincinnati.
2.
Chang,
K. H., Jayaprakash, P. T., Yew, C. H. and Abdullah, A. F. L. (2013). Gunshot residue
analysis and its evidential values: A review. Australian Journal of Forensic Sciences, 45 (1): 3-23.
3.
Blakey,
L. S., Sharples, G. P., Chana, K. and Birkett, J. W. (2018). Fate and behavior
of gunshot residue-A review. Journal of
Forensic Sciences, 63(1): 9-19.
4.
Dalby,
O., Butler, D. and Birkett, J. W. (2010). Analysis of gunshot residue and
associated materials – a review. Journal
of Forensic Sciences, 55(4): 924-943.
5.
Costa,
R. A., Motta, L. C., Destefani, C. A., Rodrigues, R. R. T., do Espirito Santo,
K. S., Aquije, G. M. F. V., Boldrini, R., Athayde, G. P. B., Carneiro, M. T. W.
D. and Ramao, W. (2016). Gunshot residue (GSR) analysis of clean range
ammunition using SEM/EDX, colorimetric test and ICP-MS: A comparative approach
between the analytical techniques. Microchemical
Journal, 129: 339-347.
6.
ASTM
(2016). Standard guide for gunshot residue analysis by scanning electron
microscopy/energy dispersive X-ray spectrometry E1588-16. American Society for
Testing and Materials International, Pennsylvania.
7.
Wolten,
G. M., Nesbitt, R. S., Calloway, A. R., Loper, G. L. and Jones, P. F. (1979).
Particle analysis for the detection of gunshot residue I: Scanning electron
microscopy/energy dispersive X-ray characterization of hand deposits from
firing. Journal of Forensic Sciences,
24(2): 409-422.
8.
Wallace,
J. S. and McQuillain, J. (1984). Discharge residues from cartridge-operated
industrial tools. Journal of the Forensic
Science Society, 24(5): 495-508.
9.
Kilty,
J. W. (1975). Activity after shooting and its effects on the retention of
primer residue. Journal of Forensic
Sciences, 20(2): 219-230.
10.
Krishnan,
S. S. (1977). Detection of gunshot residue on the hands by trace element
analysis. Journal of Forensic Sciences,
22(2): 304-324.
11.
Mastruko,
V. (2003). Detection of GSR particles on clothing of suspects. Forensic Science International, 136
(Suppl. 1): 153-154.
12.
Jalanti,
T., Henchoz, P., Gallusser, A. and Bonfanti, M. S. (1999). The persistence of
gunshot residue on shooters’ hands. Science
& Justice, 39(1): 48-52.
13.
Meng,
H-H. and Caddy, B. (1997). Gunshot residue analysis—A review. Journal of Forensic Sciences, 42 (4):
553-570.
14.
Mohd
Rafae, A. A., Mohd Ali, S. F., Abdullah, A. F. L. and Chang, K. H. (2019).
Colourimetric based detection of gunshot residue on gloves worn during shooting.
Malaysian Journal of Analytical Sciences,
23(2): 229-236.
15.
Zeichner
A. and Eldar B. (2004). A novel method for extraction and analysis of gunpowder
residues on double-side adhesive coated stubs. Journal of Forensic Sciences, 49(6): 1194-1206.
16.
Reid,
L., Chana, K., Bond, J. W., Almond, M. J. and Black, S. (2010). Stubs versus
swabs? A comparison of gunshot residue collection techniques. Journal of Forensic Sciences, 55(3):
753-756.
17.
Koons,
R., Havekost, D. and Peters, C. (1987). Analysis of gunshot primer residue
collection swabs using flameless atomic absorption spectrophotometry: A re-examination
of extraction and instrument procedures. Journal
of Forensic Sciences, 32(4): 846-865.
18.
Schwoeble,
A. J. and Exline, D. L. (2000). Current methods in forensic gunshot residue
analysis. CRC Press, Boca Raton.
19.
Brozek-Mucha, Z.
(2009). Distribution and properties of gunshot residue originating from a Luger
9 mm ammunition in the vicinity of the shooting gun. Forensic Science International, 183(1-3): 33-44.
20.
Ditrich,
H. (2012). Distribution of gunshot residue – the influence of weapon type. Forensic Science International, 220:
85-90.
21.
Kara,
I., Sarikavak, Y., Lisesivdin, S. B. and Kasap, M. (2016). Evaluation of morphological and chemical differences
of gunshot residues in different ammunitions using SEM/EDS technique. Environmental Forensics, 17(1): 68-79.
22.
Wolten,
G. M., Nesbitt, R. S., Calloway, A. R., Loper, G. L. and Jones, P. F. (1977). Final
report on particle analysis for gunshot residue detection. The Aerospace Corp,
Segundo.
23.
Wallace,
J. S. (1990) Chemical aspects of firearms ammunition. AFTE Journal, 22(4): 364-389.
24.
Warlow,
T. A. (1996). Firearms, the laws and forensic ballistics. Routledge, United
Kingdom.
25.
Wallace,
J. S. (2008). Chemical analysis of firearm, ammunition, and gunshot residue.
CRC Press, Boca Raton.
26.
Zeichner,
A. (2009). Firearm discharge residue: Analysis of. In: Wiley encyclopedia of
forensic science. John Wiley & Sons, Ltd., New York.
27.
Meng, H-H. and Lee, H-C. (2007). Elemental analysis of primer mixtures and
gunshot residues from handgun cartridges commonly encountered in Taiwan. Forensic Science Journal, 6 (1): 39-54.
28.
Gunaratnam, L. and
Himberg, K. (1994). The identification of gunshot residue particles from
lead-free Sintox ammunition. Journal of
Forensic Sciences, 39(2): 532-536.
29.
Zeichner,
A. and Levin, N. (1995). Casework experience of GSR detection in Israel, on
samples from hands, hair, and clothing using an Autosearch SEM-EDX System. Journal of Forensic Sciences, 22(2):
288-322.
30.
Rijnders, M. R.,
Stamouli, A. and Bolck, A. (2010). Comparison of GSR composition occurring at different locations around
the firing position. Journal of Forensic
Sciences, 55(3): 616-623.
31.
Wrobel, H. A., Millar, J.
J. and Kijek, M. (1998). Comparison
of properties of adhesive tapes, tabs and liquids used for the collection of
gunshot residue and other trace materials for SEM analysis. Journal of Forensic Sciences, 43(1):
178-181.
32.
Kara,
I. (2017). The influence of different skin types on GSR sampling by tape
lifting for SEM analysis. Microscopy
Research and Technique, 80(12): 1-5.
33.
Merli, D.,
Amadasi, A., Mazzarelli, D., Cappella, A., Castoldi, E., Ripa, S., Cucca, L.,
Cattaneo, C. and Profumo, A. (2019). Comparison of different swabs for sampling
inorganic gunshot residue from gunshot wounds: applicability and reliability
for the determination of firing distance. Journal
of Forensic Sciences, 64(2): 558-564.