Malaysian Journal of Analytical Sciences Vol 24 No 5 (2020): 800 - 809

 

 

 

 

EFFECT OF TIME AND TEMPERATURE ON REDUCED GRAPHENE OXIDE (rGO) LAYER STABILITY AND CYCLIC VOLTAMMETRIC BEHAVIOUR OF MODIFIED SCREEN-PRINTED CARBON ELECTRODE (mSPCE) FOR BIOSENSING PURPOSES

 

(Kesan Masa dan Suhu Pengeraman terhadap Kestabilan Lapisan rGO dan Perlakuan Voltametri Berkitar Elektrod Karbon Tercetak Terubahsuai (mSPCE) bagi Tujuan Penderiaan Bio)

 

Ahmad Farid Mohd Azmi1*, Vayithiswary Kannan2,3, Nur Sabila Yasin2, Jahwarhar Izuan Abdul Rashid1, Ainsah Omar4, Emee Marina Salleh2

 

1Centre for Defence Foundation Studies
2Centre for Research Management and Innovation
3Faculty of Defence Science and Technology
4Faculty of Medicine and Defence Health
Universiti Pertahanan Nasional Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur, Malaysia.

 

*Corresponding author:  ahmad.farid@upnm.edu.my

 

 

Received: 13 November 2019; Accepted: 3 September 2020; Published:  12 October 2020

 

 

Abstract

In recent times, electrochemical immunosensing has emerged as a promising technique for a simple, portable, cost-effective, and efficient detection of cortisol in biofluids. The 2D graphene nanosheet is widely considered as a ‘wonder material’, attributing to its numerous incredible qualities which are commonly used as nanomaterial in today’s biosensing technology. In this study, the working condition of biosensor for layer stability and cyclic voltammetric behaviour of modified screen-printed carbon electrode (mSPCE) integrated with reduced graphene oxide (rGO) was optimized. Two main parameters, i.e., incubation time and incubation temperature were investigated to assess the stability of rGO layer on the surface of modified electrode. After the modification of SPCE with rGO, the anodic and cathodic peak currents were remarkably enhanced at peak potentials 0.04 V and 0.22 V for incubation time and 0 V and 0.23 V for incubation temperature, respectively. The optimum condition of layer stability for the developed rGO-mSPCE was achieved by incubating the rGO on the electrode surface for 24 hours at 25 °C.

 

Keywords:  biosensor, graphene oxide, electrochemical, screen printed carbon electrode, incubation

 

Abstrak

Sejak kebelakangan ini, teknik pengesanan penderiaan imuno elektrokimia telah muncul sebagai teknik yang berpotensi dalam mengesan kortisol secara ringkas, mudah alih dan cekap. Lapisan nano grafin 2D adalah terkenal sebagai bahan yang menakjubkan yang merujuk kepada kepelbagaian kualitinya yang luar biasa yang menjadikannya sebagai nanomaterial yang kini selalu digunakan dalam teknologi penderiaan bio. Dalam kajian ini, kestabilan lapisan grafin teroksida yang terturun (rGO) dan tindak balas voltametri berkitar di atas permukaan elektrod karbon tercetak terubahsuai (mSPCE) telah dioptimumkan. Dua parameter utama iaitu tempoh pengeraman masa dan tempoh pengeraman suhu telah dikaji untuk menilai kestabilan lapisan rGO di atas permukaan elektrod tersebut. Selepas pengubahsuaian SPCE dengan rGO, arus puncak katod dan anod telah dipertingkatkan pada potensi puncak bernilai 0.04 V dan 0.22 V bagi tempoh pengeraman masa serta pada potensi puncak 0 V dan 0.23 V bagi tempoh pengeraman suhu. Keadaan optimum untuk kestabilan lapisan rGO-mSPCE yang telah diubahsuai dicapai melalui pengeraman lapisan rGO pada permukaan elektrod selama 24 jam pada suhu 25 °C.

 

Kata kunci:  biosensor, grafin oxida, elektrokimia, elektrod karbon tercetak terubahsuai, pengeraman

 

References

1.      Kidd, T., Carvalho, L. A. and Steptoe, A. (2014). The relationship between cortisol responses to laboratory stress and cortisol profiles in daily life. Biological Psychology, 99: 34-40.

2.      Walter, E. E., Fernandez, F., Snelling, M. and Barkus, E. (2018). Stress induced cortisol release and schizotypy. Psychoneuroendocrinology, 89: 209-215.

3.      Wichmann, S., Kirschbaum, C., Böhme, C. and Petrowski, K. (2017). Cortisol stress response in post-traumatic stress disorder, panic disorder, and major depressive disorder patients. Psychoneuroendocrinology, 83: 135-141.

4.      Linninge, C., Jönsson, P., Bolinsson, H., Önning, G., Eriksson, J., Johansson, G. and Ahrné, S. (2018). Effects of acute stress provocation on cortisol levels, zonulin and inflammatory markers in low-and high-stressed men. Biological Psychology, 138: 48-55.

5.      Wichmann, S., Kirschbaum, C., Lorenz, T. and Petrowski, K. (2017). Effects of the cortisol stress response on the psychotherapy outcome of panic disorder patients. Psychoneuroendocrinology, 77: 9-17.

6.      Cruz, A. F. D., Norena, N., Kaushik, A. and Bhansali, S. (2014). A low-cost miniaturized potentiostat for point-of-care diagnosis. Biosensors and Bioelectronics, 62: 249-254.

7.      Herrera, A. Y., Nielsen, S. E. and Mather, M. (2016). Stress-induced increases in progesterone and cortisol in naturally cycling women. Neurobiology of Stress, 3: 96-104.

8.      Koh, W. C. A., Son, J. I., Choe, E. S. and Shim, Y.-B. (2010). Electrochemical detection of peroxynitrite using a biosensor based on a conducting polymer− manganese ion complex. Analytical Chemistry, 82(24): 10075-10082.

9.      Malhotra, B. D., Chaubey, A. and Singh, S. (2006). Prospects of conducting polymers in biosensors. Analytica Chimica Acta, 578(1): 59-74.

10.   Sun, W., Zhang, Y., Hu, A., Lu, Y., Shi, F., Lei, B. and Sun, Z. (2013). Electrochemical DNA biosensor based on partially reduced graphene oxide modified carbon ionic liquid electrode for the detection of transgenic soybean A2704‐12 gene sequence. Electroanalysis, 25(6): 1417-1424.

11.   Bollella, P., Fusco, G., Tortolini, C., Sanzò, G., Favero, G., Gorton, L. and Antiochia, R. (2017). Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosensors and Bioelectronics, 89: 152-166.

12.   Liu, C.-Y., Chou, Y.-C., Tsai, J.-H., Huang, T.-M., Chen, J.-Z. and Yeh, Y.-C. (2019). Tyrosinase/Chitosan/Reduced graphene oxide modified screen-printed carbon electrode for sensitive and interference-free detection of dopamine. Applied Sciences, 9(4): 622.

13.   Patri, S. B., Adarakatti, P. S. and Malingappa, P. (2019). Silver nanoparticles-chitosan composite embedded graphite screen-printed electrodes as a novel electrochemical platform in the measurement of trace level nitrite: application to milk powder samples. Current Analytical Chemistry, 15(1): 56-65.

14.   Hanifah, M. F. R., Jaafar, J., Aziz, M., Ismail, A., Othman, M. and Rahman, M. A. (2015). Effects of reduction time on the structural, electrical and thermal properties of synthesized reduced graphene oxide nanosheets. Bulletin of Materials Science, 38(6): 1569-1576.

15.   Kimiagar, S., Rashidi, N. and Ghadim, E. E. (2015). Investigation of the effects of temperature and time on reduction of graphene oxide by microwave hydrothermal reactor. Bulletin of Materials Science, 38(7): 1699-1704.

16.   Timofeeva, T., Evseev, Z., Vinokurov, P., Alexandrov, G. and Smagulova, S. (2018). The effect of temperature conditions during graphene oxide synthesis on humidity dependence of conductivity in thermally reduced graphene oxide. Journal of Structural Chemistry, 59(4): 799-805.

17.   Omar, A., Rashid, J. I. A., Latif, A. A. A., Karim, K. A., Bakar, O. C., Bakar, M. A. and Yunus, W. (2017). Development of cortisol immunosensor based reduced graphene oxide (rGO) for future application in monitoring stress levels among military personnel. Science & Technology Research Institute for Defence (STRIDE), 10(2): 142-149.

18.   Colonna, S., Monticelli, O., Gomez, J., Novara, C., Saracco, G. and Fina, A. (2016). Effect of morphology and defectiveness of graphene-related materials on the electrical and thermal conductivity of their polymer nanocomposites. Polymer, 102: 292-300.

19.   Le Basle, Y., Chennell, P., Tokhadze, N., Astier, A. and Sautou, V. (2020). Physicochemical Stability of Monoclonal Antibodies: A Review. Journal of Pharmaceutical Sciences, 109(1): 169-190.

20.   Rahman, M. S., Anower, M. S., Bashar, L. B. and Rikta, K. A. (2017). Sensitivity analysis of graphene coated surface plasmon resonance biosensors for biosensing applications. Sensing and Bio-Sensing Research, 16: 41-45.

21.   Settu, K., Liu, J.-T., Chen, C.-J. and Tsai, J.-Z. (2017). Development of carbon-graphene-based aptamer biosensor for EN2 protein detection. Analytical Biochemistry, 534: 99-107.

22.   Song, H. S., Kwon, O. S., Kim, J.-H., Conde, J. and Artzi, N. (2017). 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosensors and Bioelectronics, 89: 187-200.