Malaysian Journal of Analytical Sciences Vol 24 No 5 (2020): 791 - 799

 

 

 

 

GREEN SYNTHESIS OF SILVER PARTICLES USING Citrus microcarpa PEEL EXTRACT

 

(Sintesis Partikel Perak Menggunakan Ekstrak kulit Citrus Microcarpa)

 

Gong Wee Jie, Masrina Mohd Nadzir*, Kalaivani Rangasamy

 

School of Chemical Engineering, Engineering Campus

Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

 

*Corresponding author:  chmasrina@usm.my

 

 

Received: 13 November 2019; Accepted: 3 September 2020; Published:  12 October 2020

 

 

Abstract

Green synthesis of particles involves the use of safe biological agents as an eco-friendly and cost-effective alternative to chemical synthesis. In this study, silver particles were biosynthesised by using silver nitrate and aqueous Citrus microcarpa peel extract as the reducing and stabilising agent. The synthesised silver particles were confirmed and characterised by UV-Vis spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and dynamic light scattering (DLS). The UV-Vis spectrum showed surface plasmon resonance (SPR) with maximum peak intensity around 450 nm. The DLS studies show that silver particles have an average Z-diameter value of 235 nm with a polydispersity index of 0.363, which indicates the presence of agglomeration. The reaction parameters have a significant effect on the formation of silver particles. The highest absorbance recorded was 1.42 obtained under conditions of 72 hours reaction time, using 5 wt.% peel extract that reacted with 8 mM silver nitrate solution, while the ratio of solution of peel extract to silver nitrate was fixed at 1:5. Silver particles were successfully synthesised by Citrus microcarpa peel extract, which has the potential to replace the chemical method.

 

Keywords:  silver particles, Citrus microcarpa, green synthesis

 

Abstrak

Sintesis hijau partikel melibatkan penggunaan agen biologi yang selamat sebagai alternatif yang mesra alam dan keberkesanan kos dibandingkan dengan kaedah sintesis kimia. Dalam kajian ini, partikel perak disintesis dengan menggunakan nitrat perak dan ekstrak kulit Citrus microcarpa berair sebagai ejen penurunan dan penstabilan. Partikel perak yang disintesis telah dikaji dan dicirikan dengan menggunakan analisis spektoskopi UV-Vis, mikroskop imbasan elektron (SEM), spektroskopi tenaga sinar-X (EDX), dan penyerakan cahaya dinamik (DLS). Spektrum UV-Vis menunjukkan permukaan resonan plasma (SPR) pada panjang gelombang maksimum sekitar 450 nm. Kajian PCD menunjukkan bahawa purata saiz bagi partikel ialah 235 nm dan indeks poliserakan adalah 0.363 yang membuktikan pengaglomeratan partikel. Parameter reaksi mempunyai kesan yang signifikan terhadap pembentukan partikel perak. Panjang gelombang tertinggi yang direkodkan adalah 1.42 yang diperolehi dalam keadaan masa 72 jam dengan menggunakan ekstrak 5 wt.% yang bertindak balas dengan larutan perak nitrat 8 mM, manakala nisbah larutan kulit ekstrak ke nitrat perak ditetapkan pada 1:5. Partikel perak boleh disintesis dengan menggunakan ekstrak kulit Citrus microcarpa yang mempunyai potensi untuk menggantikan kaedah sintesis kimia.

 

Kata kunci:  partikel perak, Citrus microcarpa, sintesis hijau

 

References

1.      Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G. and Galdiero, M. (2005). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5): 8856-8874.

2.    Ranoszek-Soliwoda, K., Tomaszewska, E., Socha, E., Krzyczmonik, P., Ignaczak, A., Orlowski, P., Krzyzowska, M., Celichowski, G. and Grobelny, J. (2017). The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. Journal of Nanoparticle Research, 19: 1-15.

3.      Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P. and Misra, A. (2009). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A, 339: 134-139.

4.      Zhang, X. F., Liu, Z. G., Shen, W. and Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(2016): 1-34.

5.      Rafique, M., Sadaf, I., Rafique, M. S. and Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial cells. Nanomedicine and Biotechnology, 45(7): 1272-1291.

6.    Nakhjavani, M., Nikkhah, V., Sarafraz, M. M., Shoja, S. and Sarafraz, M. (2017). Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behavior. Heat Mass Transfer, 53: 3201-3209.

7.      Thuc, D. T., Huy, T. Q., Hoang, L. H., Tien, B. C., Van Chung, P., Thuy, N. T. and Le, A. T. (2016). Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Materials Letters, 181: 173-177.

8.      Roy P., Das, B., Mohanty, A. and Mohapatra, S. (2017). Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Applied Nanoscience, 7: 843-850.

9.      Raza, M. A., Kanwal, Z., Rauf, A., Sabri, A. N., Riaz, S.  and Naseem, S. (2016). Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes.  Nanomaterials, 6(4): 1-15.

10.   Dugo, G. and Mondello, L. (2010). Citrus oils: Composition, advanced analytical techniques, contaminants, and biological activity. Illustrate CRC Press, pp. 60-61.

11.   Xu, G., Ye, X., Liu, D., Ma, Y. and Chen, J. (2008). Composition and distribution of phenolic acids in Ponkan and Huyou during maturity. Journal of Food Composition and Analysis, 21(5): 382-389.

12.   Cheong, M. W., Chong, Z. S, Liu, S. Q., Zhou, W., Curran, P. and Yu, B. (2012). Characterization of calamansi (Citrus microcarpa). Part I: Volatiles, aromatic profiles and phenolic acids in the peel. Food Chemistry, 134 (2): 686-695.

13.   Rice-Evans, C. A., Miller, N. J. and Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2 (4): 152-159.

14.   Khalil, M. M. H., Ismail, E. H., El-Baghdady, K. Z. and Mohamed, D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7(6): 1131-1139.

15.   Vasireddy, R., Paul, R. and Krishna, A. (2012). Green synthesis of silver nanoparticles and the study of optical properties. Nanomaterials and Nanotechnology, 2: 1-6.

16.   Senthamilselvi, S., Kumar, P., Prabha, A. L. and Govindaraju, M. (2013). Green simplistic biosynthesis of anti-bacterial silver nanoparticles using Annona squamosa leaf extract. Nano Biomedicine and Engineering, 5(2): 102-106.

17.   Satishkumar, M., Sneha, K., Won, S., Cho, C., Kim, S. and Yun, Y. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its antibacterial activity. Colloids and Surfaces B: Biointerfaces, 73(2): 332-338.

18.   Goh, E. G., Xu, X. and McCormick, P. G. (2014). Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scripta Materialia, 78-79: 49-52.

19.   Kokila, T., Ramesh, P. S. and Geetha, D. (2015). Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: A novel biological approach. Applied Nanoscience, 5: 911-920.

20.  Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N. and Dhanaraj, S. A. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15(2): 113-120.

21.   Yang, N. and Li, W. H. (2013). Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Industrial Crops and Products, 48: 81-88.

22.   Dipankar, C. and Murugan, S. (2012). The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids and Surfaces B: Biointerfaces, 98(1): 112-119.

23.   Subba Rao, Y., Kotakadi, V. S., Prasad, T. N., Reddy, A.V. and Sai Gopal, D.V. (2013). Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103:156-159.

24.   Mudgul, D. (2017). The interaction between insoluble and soluble fiber. dietary fiber for the prevention of cardiovascular disease. Academic press, pp. 35-39.

25.   Jagtap, U. B. and Bapat, V. A. (2013). Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Industrial Crops and Products, 46: 132-137.

26.   Anandalakshmi, K., Venugobal, J. and Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6: 399-408.

27.   Prathna, T. C., Chandrasekaran, N., Raichur, M. and Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces, 82(1): 152-159.