Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 791 - 799
GREEN SYNTHESIS OF SILVER PARTICLES USING Citrus
microcarpa PEEL EXTRACT
(Sintesis Partikel Perak Menggunakan Ekstrak
kulit Citrus Microcarpa)
Gong Wee Jie, Masrina Mohd Nadzir*, Kalaivani Rangasamy
School of Chemical Engineering, Engineering
Campus
Universiti Sains Malaysia, 14300 Nibong Tebal,
Penang, Malaysia
*Corresponding author: chmasrina@usm.my
Received: 13 November 2019;
Accepted: 3 September 2020; Published:
12 October 2020
Abstract
Green synthesis of particles involves the use
of safe biological agents as an eco-friendly and cost-effective alternative to
chemical synthesis. In this study, silver particles were biosynthesised by
using silver nitrate and aqueous Citrus microcarpa peel extract as the
reducing and stabilising agent. The synthesised silver particles were confirmed
and characterised by UV-Vis spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and dynamic
light scattering (DLS). The UV-Vis spectrum showed surface plasmon resonance
(SPR) with maximum peak intensity around 450 nm. The DLS studies show that
silver particles have an average Z-diameter value of 235 nm with a
polydispersity index of 0.363, which indicates the presence of agglomeration.
The reaction parameters have a significant effect on the formation of silver
particles. The highest absorbance recorded was 1.42 obtained under conditions
of 72 hours reaction time, using 5 wt.% peel extract that reacted with 8 mM
silver nitrate solution, while the ratio of solution of peel extract to silver
nitrate was fixed at 1:5. Silver particles were successfully synthesised by Citrus
microcarpa peel extract, which has the potential to replace the chemical
method.
Keywords: silver
particles, Citrus microcarpa, green synthesis
Abstrak
Sintesis hijau partikel
melibatkan penggunaan agen biologi yang selamat sebagai alternatif yang mesra
alam dan keberkesanan kos dibandingkan dengan kaedah sintesis kimia. Dalam
kajian ini, partikel perak disintesis dengan menggunakan nitrat perak dan
ekstrak kulit Citrus microcarpa berair sebagai ejen penurunan dan
penstabilan. Partikel perak yang disintesis telah dikaji dan dicirikan dengan
menggunakan analisis spektoskopi UV-Vis, mikroskop imbasan elektron (SEM),
spektroskopi tenaga sinar-X (EDX), dan penyerakan cahaya dinamik (DLS).
Spektrum UV-Vis menunjukkan permukaan resonan plasma (SPR) pada panjang
gelombang maksimum sekitar 450 nm. Kajian PCD menunjukkan bahawa purata saiz
bagi partikel ialah 235 nm dan indeks poliserakan adalah 0.363 yang membuktikan
pengaglomeratan partikel. Parameter reaksi mempunyai kesan yang signifikan
terhadap pembentukan partikel perak. Panjang gelombang tertinggi yang
direkodkan adalah 1.42 yang diperolehi dalam keadaan masa 72 jam dengan
menggunakan ekstrak 5 wt.% yang bertindak balas dengan larutan perak nitrat 8
mM, manakala nisbah larutan kulit ekstrak ke nitrat perak ditetapkan pada 1:5.
Partikel perak boleh disintesis dengan menggunakan ekstrak kulit Citrus
microcarpa yang mempunyai potensi untuk menggantikan kaedah sintesis kimia.
Kata kunci: partikel perak, Citrus microcarpa,
sintesis hijau
References
1. Franci, G.,
Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G. and Galdiero, M.
(2005). Silver nanoparticles as potential antibacterial agents. Molecules,
20(5): 8856-8874.
2. Ranoszek-Soliwoda,
K., Tomaszewska, E., Socha, E., Krzyczmonik, P., Ignaczak, A., Orlowski, P.,
Krzyzowska, M., Celichowski, G. and Grobelny, J. (2017). The role of tannic
acid and sodium citrate in the synthesis of silver nanoparticles. Journal of
Nanoparticle Research, 19: 1-15.
3. Bar, H., Bhui, D. K.,
Sahoo, G. P., Sarkar, P., De, S. P. and Misra, A. (2009). Green synthesis of
silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A, 339: 134-139.
4. Zhang, X. F., Liu,
Z. G., Shen, W. and Gurunathan, S. (2016). Silver nanoparticles: Synthesis,
characterization, properties, applications, and therapeutic approaches. International
Journal of Molecular Sciences, 17(2016): 1-34.
5. Rafique, M., Sadaf,
I., Rafique, M. S. and Tahir, M. B. (2017). A review on green synthesis of
silver nanoparticles and their applications. Artificial cells. Nanomedicine
and Biotechnology, 45(7): 1272-1291.
6. Nakhjavani, M.,
Nikkhah, V., Sarafraz, M. M., Shoja, S. and Sarafraz, M. (2017). Green
synthesis of silver nanoparticles using green tea leaves: Experimental study on
the morphological, rheological and antibacterial behavior. Heat Mass
Transfer, 53: 3201-3209.
7. Thuc, D. T., Huy,
T. Q., Hoang, L. H., Tien, B. C., Van Chung, P., Thuy, N. T. and Le, A. T.
(2016). Green synthesis of colloidal silver nanoparticles through
electrochemical method and their antibacterial activity. Materials Letters,
181: 173-177.
8. Roy P., Das, B.,
Mohanty, A. and Mohapatra, S. (2017). Green synthesis of silver nanoparticles
using Azadirachta indica leaf extract and its antimicrobial study. Applied
Nanoscience, 7: 843-850.
9. Raza, M. A.,
Kanwal, Z., Rauf, A., Sabri, A. N., Riaz, S.
and Naseem, S. (2016). Size- and shape-dependent antibacterial studies
of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 6(4): 1-15.
10. Dugo, G. and Mondello, L. (2010). Citrus oils: Composition, advanced
analytical techniques, contaminants, and biological activity. Illustrate
CRC Press, pp. 60-61.
11. Xu, G., Ye, X.,
Liu, D., Ma, Y. and Chen, J. (2008). Composition and distribution of phenolic
acids in Ponkan and Huyou during maturity. Journal of Food Composition and
Analysis, 21(5): 382-389.
12. Cheong, M. W.,
Chong, Z. S, Liu, S. Q., Zhou, W., Curran, P. and Yu, B. (2012).
Characterization of calamansi (Citrus
microcarpa). Part I: Volatiles, aromatic profiles and phenolic acids in the
peel. Food Chemistry, 134 (2): 686-695.
13. Rice-Evans, C. A., Miller, N. J. and Paganga, G.
(1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2 (4): 152-159.
14. Khalil, M. M. H.,
Ismail, E. H., El-Baghdady, K. Z. and Mohamed, D. (2014). Green
synthesis of silver nanoparticles using olive leaf extract and its
antibacterial activity. Arabian Journal of Chemistry, 7(6):
1131-1139.
15.
Vasireddy, R., Paul, R. and Krishna, A. (2012). Green synthesis of silver
nanoparticles and the study of optical properties. Nanomaterials and Nanotechnology, 2: 1-6.
16.
Senthamilselvi, S., Kumar, P., Prabha, A. L. and Govindaraju, M.
(2013). Green simplistic biosynthesis of anti-bacterial silver nanoparticles
using Annona squamosa leaf extract. Nano Biomedicine and Engineering, 5(2): 102-106.
17.
Satishkumar, M., Sneha, K., Won, S., Cho, C., Kim, S. and Yun, Y.
(2009). Cinnamon
zeylanicum bark extract and powder mediated green synthesis of nano-crystalline
silver particles and its antibacterial activity. Colloids and Surfaces B:
Biointerfaces, 73(2): 332-338.
18.
Goh, E. G., Xu, X. and McCormick, P. G.
(2014). Effect of particle size on the UV absorbance of zinc oxide
nanoparticles. Scripta Materialia, 78-79: 49-52.
19.
Kokila, T., Ramesh, P. S. and Geetha, D. (2015).
Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its
antibacterial and free radical scavenging assay: A novel biological approach. Applied Nanoscience, 5: 911-920.
20. Veerasamy, R., Xin,
T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N. and
Dhanaraj, S. A. (2011). Biosynthesis of silver nanoparticles using mangosteen
leaf extract and evaluation of their antimicrobial activities. Journal of
Saudi Chemical Society, 15(2): 113-120.
21. Yang, N. and Li, W.
H. (2013). Mango peel extract mediated novel route for synthesis of silver
nanoparticles and antibacterial application of silver nanoparticles loaded onto
non-woven fabrics. Industrial Crops and Products, 48: 81-88.
22. Dipankar,
C. and Murugan, S. (2012). The
green synthesis, characterization and evaluation of the biological activities
of silver nanoparticles synthesized from Iresine herbstii leaf aqueous
extracts. Colloids and Surfaces B: Biointerfaces, 98(1): 112-119.
23. Subba Rao, Y.,
Kotakadi, V. S., Prasad, T. N., Reddy, A.V. and Sai Gopal, D.V. (2013). Green
synthesis and spectral characterization of silver nanoparticles from Lakshmi
tulasi (Ocimum sanctum) leaf extract. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 103:156-159.
24. Mudgul, D. (2017).
The interaction between insoluble and soluble fiber. dietary fiber for the
prevention of cardiovascular disease. Academic press, pp. 35-39.
25.
Jagtap, U. B. and Bapat, V. A. (2013). Green
synthesis of silver nanoparticles using Artocarpus heterophyllus Lam.
seed extract and its antibacterial activity. Industrial Crops and Products,
46: 132-137.
26.
Anandalakshmi, K., Venugobal, J. and
Ramasamy, V. (2016). Characterization of silver nanoparticles by green
synthesis method using Pedalium murex leaf extract and their
antibacterial activity. Applied Nanoscience, 6: 399-408.
27.
Prathna, T. C., Chandrasekaran, N., Raichur, M. and
Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous
extract and theoretical prediction of particle size. Colloids and Surfaces B:
Biointerfaces, 82(1): 152-159.