Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 783 - 790
STRUCTURAL AND OPTICAL PROPERTIES OF DYSPROSIUM AND EUROPIUM
CO-DOPED WITH YTTRIUM ALUMINIUM GARNET NANOCRYSTALLINE POWDERS PREPARED BY
COMBUSTION SYNTHESIS
(Sifat-sifat Struktural dan Optikal daripada
Serbuk Nanokristal Dysprosium dan Europium Di-ko-dopkan dengan Yattrium
Aluminium Garnet yang Disediakan Secara Sintesis Pembakaran)
Abd Rahman
Tamuri*, Nor Ezzaty Ahmad, Nurliyana Nabilah Ghazali, Rosli Husin
Physics Department, Faculty of Science,
Universiti Teknologi Malaysia, 81310 Johor
Bahru, Malaysia.
*Corresponding author: rahmantamuri@utm.my
Received: 13 November 2019;
Accepted: 3 September 2020; Published:
12 October 2020
Abstract
This paper presents the study on synthesized
yttrium aluminum garnet (YAG), europium-doped YAG (YAG: Eu), and europium and
dysprosium co-doped YAG (YAG: Eu, Dy) phosphors prepared by combustion
synthesis (CS) using a mixture of fuel (urea). The effects of Eu3+ and Dy3+
ions concentration and annealing temperature were analysed using by X-ray
diffraction (XRD) and photoluminescence (PL). YAG nano-crystalline powders were
calcined at a temperature range of 900 ℃ to 1200 ℃ for 4 hours.
Europium and dysprosium were added in different concentrations in the range of
0.1 at.% to 1.0 at.% to the coarsened pure YAG particles to understand its
influences on the optical properties and sintered microstructures. The doping
of YAG: Eu and co-doped YAG: Eu, Dy was calcined at 1100 ℃ for 4 hours. X-ray
diffraction results showed the phosphors are single-phase YAG with crystalline
sizes ranging from 30 to 40 nm. The room temperature photoluminescence results
confirmed the introduction of the ion in the host lattice and its optical
activation for all the Eu3+ and Dy3+ ions concentrations. The
CIE1931 color coordinates showed the sample's emission laid in the near red
region for Eu3+ ion concentration and near white region for the
addition of Eu3+ and Dy3+ ion concentration. Eu3+
ion concentration of 1.0 at.% achieved the highest emission spectra intensity
while the highest emission spectra was achieved at 0.5 at.% for Dy3+
ion concentration and the ion luminescence were preferentially excited with 395
nm for YAG: Eu while, 353 nm for YAG: Eu, Dy wavelength photons.
Keywords: YAG: Eu, Dy, europium, dysprosium, combustion
synthesis, emission, urea
Abstrak
Kertas kerja ini
membentangkan kajian hasil sintesis yttrium aluminium garnet (YAG), YAG
Europium-doped (YAG: Eu) dan europium dan dysprosium bersama-sama doped YAG
(YAG: Eu, Dy) fosfor yang disediakan oleh sintesis pembakaran (CS) menggunakan
campuran bahan api (urea). Kesan kepekatan Eu3+ dan Dy3+ ion
dan suhu kalsinasi telah dikaji oleh belauan sinar-X (XRD) dan fotoluminesens
(PL). Serbuk YAG nano-kristal telah dikalsinasi dalam julat suhu 900 ℃
hingga 1200 ℃ selama 4 jam. Europium dan dysprosium ditambah dengan
kepekatan yang berlainan dalam julat 0.1% hingga 1.0% kepada zarah YAG tulen
untuk memahami pengaruhnya terhadap sifat optikal dan mikrostruktur sintered.
Dop YAG: Eu dan ko-dop YAG: Eu, Dy telah dikalsinasi pada suhu 1100 ℃
untuk 4 jam. Keputusan belauan sinar-X menunjukkan bahawa fosfor adalah berfasa
tunggal YAG dengan saiz kristal antara 30 nm hingga 40 nm. Hasil fotoluminensi
pada suhu bilik mengesahkan pengenalan ion dalam kekisi tuan rumah dan
pengaktifan optikal untuk semua kepekatan Eu3+ dan Dy3+
ions. Koordinat warna CIE1931 menunjukkan bahawa spektrum pancaran sampel terletak
di kawasan merah berhampiran untuk kepekatan Eu3+ ion dan
berhampiran kawasan putih untuk penambahan kepekatan Eu3+ dan Dy3+
ion. Keamatan spektrum pancaran tertinggi dicapai untuk kepekatan Eu3+
ion pada 1.0 % sementara kepekatan 0.5% pada ion Dy3+ dan pengujaan
lebih sesuai pada panjang gelombang 395 nm untuk YAG: Eu manakala, 353 nm untuk
YAG: Eu, Dy.
Kata kunci: YAG: Eu, Dy, europium,
dysprosium, sintesis pembakaran, pancaran, urea
References
1.
Pan, Y. X., Wang, W.,
Liu, G. K., Skanthakumar, S., Rosenberg, R. A., Guo, X. Z. and Li, K. K.
(2009). Correlation between structure variation and luminescence redshift in
YAG:Ce. Journal of Alloys and Compounds, 488(2):
638-642.
2.
Jiang, J., Wang, P., He,
W., Chen, W., Zhuang, H., Cheng, Y. and Yan, D. (2004). Self‐propagating
high-temperature
synthesis of α‐SiAlON doped by RE (RE=Eu,Pr,Ce) and codoped by RE
and Yttrium. Journal of American Ceramic
Society, 87(4): 703-705.
3.
Chong, J. Y., Zhang, Y.,
Wagner, B. K. and Kang, Z. (2013). Co-precipitation synthesis of YAG:Dy
nanophosphor and its thermometric properties. Journal of Alloys and Compounds, 581: 484-487.
4.
Kumar, K. S., Lou, C., Xie,
Y., Hu, L., Gowri, A.M., Xiao, D., Ye, H., Tang, L., and Didier, P. (2017). Energy transfer in co- and tri- doped
Y3Al5O12 phosphors. Journal of Rare Earths, 35(8): 775-782.
5.
Mithlesh, K., Mohapatra,
M., and Natarajan, V. (2014). Luminescence characteristics of blue emitting
ZnAl2O4:Ce nanophosphors. Journal of Luminescence, 149: 118-124.
6.
Kurrey, M. S., Tiwari, A.,
Khokhar, M. S. K., Kher, R. S. and Dhoble, S.J. (2015). Thermoluminescence
investigations of sol–gel derived and -irradiated rare earth (Eu and Nd) doped
YAG nanophosphors. Journal of
Luminescence, 164: 94-98.
7.
Ya-Wei, L. and Su-Hsen,
W. (2018). Fabrication and performance assessment of coprecipitation-based
YAG:Ce nanopowders for white LEDs. Microelectronic
Engineering, 199: 24-30.
8.
Hora, D. A., Andrade, A. B.,
Ferreira, N. S., Teixeira, V. C., and dos S. Rezende, M.V. (2016). X-ray
excited optical luminescence of Eu-doped YAG nanophosphors produced via glucose
sol–gel route. Ceramics International,
42: 10516-10519.
9.
Raju, G. S. R., Park, J.
Y., Jung, H. C., Hyun, K, Y., Byung, K. M., Jung, H. J., and Jung, H. K. (2009).
Synthesis and luminescent properties of low concentration Dy3+:GAP
nanophosphors. Optical Materials, 31:
1210-1214.
10.
Kolesnikov, I. E.,
Tolstikova, D. V., Kurochkin, A. V., Manshina, A. A. and Mikhailov, M. D.
(2014). Eu3+ concentration effect on luminescence properties of
YAG:Eu3+ nanoparticles. Optical
Materials, 37: 306-310.
11.
Guodong, X., Shengming,
Z., Junji, Z., Sumei, W., Yanmei, L. and Jun, X. (2015). Sol–gel combustion
synthesis and luminescent properties of nanocrystalline YAG:Eu3+
phosphors. Journal of Crystal Growth, 283:
257-262.
12.
Bhargava, R. N.,
Gallagher, D., Hong, X. and Nurmikko, A. (1994). Optical properties of manganese-doped
nanocrystals of ZnS. Physics Review Letters,
72(3): 416-419.
13.
Zhang, W. P., Xi, P. B.,
Duan, C. K., Yan, K., Yi, M., Lou, L. R., Xia, S. D. and Krupa, J. C. (1998).
Preparation and size effect on concentration quenching of nanocrystalline Y2SiO5:
Eu. Chemistry Physics Letters, 292(1-2):133-136.
14.
Allison, S. W. and Gillie,
G. T. (1997). Remote thermometry with thermographic phosphors. Review of Scientific Instruments, 68(7):
2615-2650.
15.
Mu, Z., Hu, Y., Wang,
Yi., Wu, H., Fu, C., and Kang, F. (2011).
Effect of substitution of Dy3+ on structure and luminescence
properties of Y3Al5O12:Ce3+. Acta Optica Sinica, 31(2): 0216007.
16.
Lojpur, V., Egelja, A., Pantić,
J., Dordević, V., Matović, B. and Dramićanin, M. D. (2014). Y3Al5O12:Re3+
(Re=Ce, Eu, and Sm) nanocrystalline powders prepared by modified glycine
combustion method. Science of Sintering,
46(1): 75-82.
17.
Mote, V. D., Purushotham,
Y. and Dole, B. N. (2012). Williamson-Hall analysis in estimation of lattice
strain in nanometer-sized ZnO particles. Journal
of Theoretical and Applied Physics, 6(6):1-8.
18.
Cullity, B. D., and Stock,
S. R. (2001). Elements of X-ray diffraction, 3rd edition. Prentice Hall
Publication, India.
19.
Rietveld, H. M. (1967).
Line profiles of neutron powder‐diffraction peaks for structure refinement.
Acta Crystallographica, 22(1):
151-152.
20.
Balzar, D. and Ledbetter,
H. (1993). Voigt-function modeling in Fourier analysis of size- and
strain-broadened X-ray diffraction peaks. Journal
of Applied Crystallography, 26: 97-103.
21.
Warren, B. E. and
Averbach, B. L. (1950). The effect of cold‐work distortion on X‐ray
patterns. Journal of Applied Physics,
21(6): 595-599.
22.
Suryanarayana, C. and
Grant Norton, M. (1998). X-ray diffraction: A practical approach. Springer, New
York.
23.
Anitha, S. N., and Jayakumari,
I. (2015). Synthesis and analysis of nanocrystalline Fe2Mn2Ni0.5Zn1.5O9
at different treating temperatures. Journal
of Nanoscience and Technology, 1(1): 26-31.
24.
Chowdhury, M. and Sharma,
S. K. (2015). Spectroscopic behavior of Eu3+ in SnO2 for
tunable red emission in solid state lighting devices. RSC Advances, 5: 51102-51109.
25.
Ashwini, K. R., Premkumar,
H. B., Darshan, G. P., Nagabhushana, H., Sharma, S., Prashantha, S. and Nagaswarupag,
H. P. (2017). Synthesis and photometric properties of SrAl2O4:
Gd3+ nanophosphors via solution combustion method. Materials Today: Proceedings, 4: 12168-12173.