Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 772 - 782
A BRIEF REVIEW ON THE DESIGN AND SYNTHESIS OF
NEW ANTIDOTES IN THE TREATMENT OF ORGANOPHOSPHORUS POISONINGS
(Ulasan Ringkas pada Reka Bentuk dan Sintesis Antidot Baru
untuk Merawat Keracunan Organofosforus)
Mas Amira Idayu Abdul Razak1,2, Mohd
Nor Faiz Norrrahim2, Ong Keat Khim2,3, Siti Aminah Mohd
Noor3, Norhana Abd Halim3, Noor Aisyah Ahmad
Shah3, Victor Feizal Knight2, Wan Md. Zin Wan Yunus2,3,
Noor Azilah Mohd Kasim2,3*
1Faculty of Defence
Science and Technology
2Centre for Chemical
Defence
3Centre for Defence
Foundation Studies
Universiti Pertahanan
Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
*Corresponding
author: azilah@upnm.edu.my
Received: 13 November 2019; Accepted: 3 September 2020;
Published: 12 October 2020
Abstract
Organophosphorus (OP)
are highly toxic compounds commonly used as pesticides and chemical warfare
nerve agents. Exposure to OP compounds can lead to death due to respiratory
failure. OP compounds function to inhibit the enzyme acetylcholinesterase
(AChE) which controls the transmission of nervous impulses and accumulation of
acetylcholine (Ach) at cholinergic receptor sites. The inhibition of AChE by OP
compounds can cause motor convulsions and epileptic seizures. There are several
drugs used to treat OP poisonings, such as atropine, diazepam, and oximes.
However, none of them are considered to be effective in treating OP poisonings.
Recently, several new researches have been done to introduce strategies on
designing oximes to treat OP poisonings. Therefore, this brief review
summarizes several recent findings on the design and synthesis of new oximes
that can reactivate the inhibited AChE.
Keywords: organophosphorus, nerve agents,
acetylcholinesterase, acetylcholine, oximes
Abstrak
Peranti agen saraf organofosforus (OP) sering digunakan
sebagai agen racun perosak dan agen saraf dalam peperangan kimia. Pendedahan
kepada OP boleh menyebabkan kematian akibat kegagalan sistem pernafasan. OP
menghalang enzim asetilkolinesterase (AchE)
yang berfungsi untuk mengawal penghantaran impuls saraf dan pengumpulan
asetilkolin (Ach) di tapak reseptor kolinergik yang boleh menyebabkan sawan
motor dan sawan epilepsi. Terdapat beberapa kaedah yang digunakan untuk merawat
keracunan organofosforus seperti atropin, diazepam, dan oksim.
Walaubagaimanapun, tidak ada satu pun yang berkesan untuk merawat keracunan OP.
Baru-baru ini, beberapa penyelidikan telah dijalankan untuk memperkenalkan
strategi baru dalam rek bentuk penawar atau antidot yang boleh merawat agen
saraf OP. Oleh itu, tinjauan semula ini meringkaskan beberapa strategi baru
dalam reka bentuk dan sintesis penawar atau antidot baru yang dapat
mengaktifkan semula AchE yang terhalang.
Kata
kunci: sebatian organofosforus, agen saraf,
asetilkolinesterase, asetilkolin, antidot
References
1.
Sharma, R., Gupta, B.,
Singh, N., Acharya, J. R. and Musilek, K. (2014). Development and structural
modifications of cholinesterase reactivators against chemical warfare agents in
last decade: A review. Mini Reviews in
Medicinal Chemistry, 15(1): 58-72.
2.
Jokanović, M. and
Stojiljković, M. P. (2006). Current understanding of the application of
pyridinium oximes as cholinesterase reactivators in treatment of
organophosphate poisoning. European
Journal of Pharmacology, 553 (1–3):
10-17.
3.
Jokanović, M.
(2012). Structure-activity relationship and efficacy of pyridinium oximes in
the treatment of poisoning with organophosphorus compounds: A review of recent
data. Current Topics in Medicinal
Chemistry, 12(16): 1775-1789.
4.
Faiz Norrrahim, M. N.,
Idayu Abdul Razak, M. A., Ahmad Shah, N. A., Kasim, H., Wan Yusoff, W. Y.,
Halim, N. A., and Mohd Kasim, N. A. (2020). Recent developments on oximes to
improve the blood brain barrier penetration for the treatment of
organophosphorus poisoning: A review. RSC
Advances, 10(8): 4465–4489.
5.
Digiovanni, C. (2017). The spectrum of human reactions to
terrorist attacks with weapons of mass destruction: Early management
considerations. Prehospital Disaster Medicine,
18(13): 253-257.
6.
Luo, C., Tong, M.,
Maxwell, D. M. and Saxena, A. (2008). Comparison of oxime reactivation and
aging of nerve agent-inhibited monkey and human acetylcholinesterases. Chemico-Biological Interactions, 175
(1–3): 261-266.
7.
Soukup, O., Krusek, J.
and Oz, M. (2011). Oxime reactivators and their in vivo and in vitro
effects on nicotinic receptors. Physiological
Research, 60(4): 679-86.
8.
Marrs, T. C. (1993).
Organophosphate poisoning. Pharmacology and
Therapeutics, 58: 51-66.
9.
Musilek, K., Dolezal, M.,
Gunn-moore, F. and Kuca, K. (2009). Design, evaluation and structure-activity
relationship studies of the AChE reactivators against organophosphorus
pesticides. Medicinal Research Reviews,
31 (4): 548-575.
10.
Worek, F., Thiermann, H.
and Wille, T. (2016). Oximes in organophosphate poisoning: 60 years of hope and
despair. Chemico-Biological Interactions,
259: 93-98.
11.
Maxwell, D. M.,
Koplovitz, I., Worek, F. and Sweeney, R. E. (2008). A structure-activity
analysis of the variation in oxime efficacy against nerve agents. Toxicology and Applied Pharmacology,
231(2): 157-164.
12.
Ashani, Y.,
Bhattacharjee, A. K., Leader, H., Saxena, A. and Doctor, B. P. (2003).
Inhibition of cholinesterases with cationic phosphonyl oximes highlights
distinctive properties of the charged pyridine groups of quaternary oxime
reactivators. Biochemical Pharmacology,
66(2): 191-202.
13.
Worek, F., Eyer, P.,
Aurbek, N., Szinicz, L. and Thiermann, H. (2007). Recent advances in evaluation
of oxime efficacy in nerve agent poisoning by in vitro analysis. Toxicology and Applied Pharmacology, 219 (2–3): 226-234.
14.
Musilek, K., Holas, O.,
Misik, J., Pohanka, M. and Novotny, L. (2010). Monooxime-monocarbamoyl bispyridinium
xylene-linked reactivators of acetylcholinesterase-synthesis, in vitro
and toxicity evaluation and docking studies. ChemMedChem, 5: 247-254.
15.
Kuca, K., Karasova, J.
and Musilek, K. (2007). Development of new reactivators of tabun inhibited
acetylcholinesterase and the evaluation of their efficacy by in vitro and in
vivo methods. In Defence against the Effects of Chemical Hazards: Toxicology,
Diagnosis and Medical Countermeasures, 17: pp. 1-12.
16.
Musilek, K., Komloova,
M., Holas, O., Horova, A., Pohanka, M., Gunn-Moore, F. and Kuca, K. (2011).
Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl
linkage-Preparation, in vitro screening and molecular docking. Bioorganic and Medicinal Chemistry, 19 (2): 754-762.
17.
Pohanka, M., Jun, D. and
Kuca, K. (2008). Improvement of acetylcholinesterase-based assay for
organophosphates in way of identification by reactivators. Talanta, 77 (1): 451-454.
18.
Koning, M. C., Joosen, M.
J. A., Noort, D., van Zuylen, A., and Tromp, M. C. (2011). Peripheral site
ligand–oxime conjugates: A novel concept towards reactivation of nerve
agent-inhibited human acetylcholinesterase. Bioorganic
& Medicinal Chemistry, 19(1): 588-594.
19.
Sit, R. K., Radić,
Z., Gerardi, V., Garcia, E., Zhang, L., Katalinic, M., Amitai, G., Kovarik, Z.,
Fokin, V. V., Sharpless, K. B. and Taylor, P. (2011). New structural scaffolds
for centrally acting oxime reactivators of phosphylated cholinesterases. The Journal of Biological Chemistry.
286(22): 19422-19430.
20.
Gillon, E. and Renard, P.
(2012). Phenyltetrahydroisoquinoline-pyridinaldoxime conjugates as efficient
uncharged reactivators for the dephosphylation of inhibited human
acetylcholinesterase. Journal of
Medicinal Chemistry, 55: 10791-10795.
21.
Worek, F., Wille, T.,
Koller, M. and Thiermann, H. (2012). Reactivation kinetics of a series of
related bispyridinium oximes with organophosphate-inhibited human
acetylcholinesterase Structure-activity relationships. Biochemical Pharmacology, 83(12): 1700-1706.
22.
McHardy, S. F., Bohmann,
J. A., Corbett, M. R., Campos, B., Tidwell, M. W., Thompson, P. M. and
McDonough, J. (2014). Design, synthesis, and characterization of novel,
nonquaternary reactivators of GF-inhibited human acetylcholinesterase. Bioorganic and Medicinal Chemistry Letters,
24(7): 1711-1714.
23.
Wei, Z., Liu, Y., Wang,
Y., Li, W., Zhou, X., Zhao, J. and Li, S. (2016). Novel nonquaternary
reactivators showing reactivation efficiency for soman-inhibited human
acetylcholinesterase. Toxicology Letters,
246: 1-6.
24.
Wei, Z., Liu, Y. Q, Wang,
S. zheng, Yao, L., Nie, H. F., Wang, Y. and Li, S. (2017). Conjugates of
salicylaldoximes and peripheral site ligands: Novel efficient nonquaternary
reactivators for nerve agent-inhibited acetylcholinesterase. Bioorganic and Medicinal Chemistry,
25(16): 4497-4505.
25.
Ralph, E. C., Zhang, J.
and Cashman, J. R. (2011). Amidine-oximes: Reactivators for organophosphate
exposure. Journal of Medicinal Chemistry,
54: 3319-3330.
26.
Kalisiak, J., Ralph, E.
C. and Cashman, J. R. (2012). Nonquaternary reactivators for
organophosphate-inhibited cholinesterases. Journal
of Medicinal Chemistry, 55(1): 465-474.
27.
Koning, M. C., Grol, M.
Van. and Noort, D. (2011). Peripheral site ligand conjugation to a
non-quaternary oxime enhances reactivation of nerve agent-inhibited human
acetylcholinesterase. Toxicology Letters,
206 (1): 54-59.
28.
Wei, Z., Bi, H., Liu, Y.,
Nie, H., Yao, L. and Wang, S. (2018). Bioorganic chemistry design, synthesis
and evaluation of new classes of nonquaternary reactivators for
acetylcholinesterase inhibited by organophosphates. Bioorganic Chemistry, 81: 681-688.
29.
Mercey, G., Verdelet, T.,
Saint-André, G., Gillon, E., Wagner, A., Baati, R. and Renard, P. Y. (2011).
First efficient uncharged reactivators for the dephosphylation of poisoned
human acetylcholinesterase. Chemical
Communications, 47(18): 5295–5297.
30.
Mercey, G., Verdelet, T.,
Renou, J., Kliachyna, M., Baati, R., Nachon, F. and Renard, P. Y. (2012).
Reactivators of acetylcholinesterase inhibited by organophosphorus nerve
agents. Accounts of Chemical Research,
45(5): 756-766.