Malaysian Journal of Analytical Sciences Vol 24 No 5 (2020): 772 - 782

 

 

 

 

A BRIEF REVIEW ON THE DESIGN AND SYNTHESIS OF NEW ANTIDOTES IN THE TREATMENT OF ORGANOPHOSPHORUS POISONINGS

 

(Ulasan Ringkas pada Reka Bentuk dan Sintesis Antidot Baru untuk Merawat Keracunan Organofosforus)

 

Mas Amira Idayu Abdul Razak1,2, Mohd Nor Faiz Norrrahim2, Ong Keat Khim2,3, Siti Aminah Mohd Noor3, Norhana Abd Halim3, Noor Aisyah Ahmad Shah3, Victor Feizal Knight2, Wan Md. Zin Wan Yunus2,3,

Noor Azilah Mohd Kasim2,3*

 

1Faculty of Defence Science and Technology

2Centre for Chemical Defence

3Centre for Defence Foundation Studies

Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia

 

*Corresponding author:  azilah@upnm.edu.my

 

 

Received: 13 November 2019; Accepted: 3 September 2020; Published: 12 October 2020

 

 

Abstract

Organophosphorus (OP) are highly toxic compounds commonly used as pesticides and chemical warfare nerve agents. Exposure to OP compounds can lead to death due to respiratory failure. OP compounds function to inhibit the enzyme acetylcholinesterase (AChE) which controls the transmission of nervous impulses and accumulation of acetylcholine (Ach) at cholinergic receptor sites. The inhibition of AChE by OP compounds can cause motor convulsions and epileptic seizures. There are several drugs used to treat OP poisonings, such as atropine, diazepam, and oximes. However, none of them are considered to be effective in treating OP poisonings. Recently, several new researches have been done to introduce strategies on designing oximes to treat OP poisonings. Therefore, this brief review summarizes several recent findings on the design and synthesis of new oximes that can reactivate the inhibited AChE.

 

Keywords:  organophosphorus, nerve agents, acetylcholinesterase, acetylcholine, oximes

 

Abstrak

Peranti agen saraf organofosforus (OP) sering digunakan sebagai agen racun perosak dan agen saraf dalam peperangan kimia. Pendedahan kepada OP boleh menyebabkan kematian akibat kegagalan sistem pernafasan. OP menghalang enzim asetilkolinesterase (AchE) yang berfungsi untuk mengawal penghantaran impuls saraf dan pengumpulan asetilkolin (Ach) di tapak reseptor kolinergik yang boleh menyebabkan sawan motor dan sawan epilepsi. Terdapat beberapa kaedah yang digunakan untuk merawat keracunan organofosforus seperti atropin, diazepam, dan oksim. Walaubagaimanapun, tidak ada satu pun yang berkesan untuk merawat keracunan OP. Baru-baru ini, beberapa penyelidikan telah dijalankan untuk memperkenalkan strategi baru dalam rek bentuk penawar atau antidot yang boleh merawat agen saraf OP. Oleh itu, tinjauan semula ini meringkaskan beberapa strategi baru dalam reka bentuk dan sintesis penawar atau antidot baru yang dapat mengaktifkan semula AchE yang terhalang.

 

Kata kunci:  sebatian organofosforus, agen saraf, asetilkolinesterase, asetilkolin, antidot

 

References

1.      Sharma, R., Gupta, B., Singh, N., Acharya, J. R. and Musilek, K. (2014). Development and structural modifications of cholinesterase reactivators against chemical warfare agents in last decade: A review. Mini Reviews in Medicinal Chemistry, 15(1): 58-72.

2.      Jokanović, M. and Stojiljković, M. P. (2006). Current understanding of the application of pyridinium oximes as cholinesterase reactivators in treatment of organophosphate poisoning. European Journal of Pharmacology, 553 (1–3): 10-17.

3.      Jokanović, M. (2012). Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: A review of recent data. Current Topics in Medicinal Chemistry, 12(16): 1775-1789.

4.      Faiz Norrrahim, M. N., Idayu Abdul Razak, M. A., Ahmad Shah, N. A., Kasim, H., Wan Yusoff, W. Y., Halim, N. A., and Mohd Kasim, N. A. (2020). Recent developments on oximes to improve the blood brain barrier penetration for the treatment of organophosphorus poisoning: A review. RSC Advances, 10(8): 4465–4489.

5.      Digiovanni, C. (2017). The spectrum of human reactions to terrorist attacks with weapons of mass destruction: Early management considerations. Prehospital Disaster Medicine, 18(13): 253-257.

6.      Luo, C., Tong, M., Maxwell, D. M. and Saxena, A. (2008). Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases. Chemico-Biological Interactions, 175 (1–3): 261-266.

7.      Soukup, O., Krusek, J. and Oz, M. (2011). Oxime reactivators and their in vivo and in vitro effects on nicotinic receptors. Physiological Research, 60(4): 679-86.

8.      Marrs, T. C. (1993). Organophosphate poisoning. Pharmacology and Therapeutics, 58: 51-66.

9.      Musilek, K., Dolezal, M., Gunn-moore, F. and Kuca, K. (2009). Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides. Medicinal Research Reviews, 31 (4): 548-575.

10.   Worek, F., Thiermann, H. and Wille, T. (2016). Oximes in organophosphate poisoning: 60 years of hope and despair. Chemico-Biological Interactions, 259: 93-98.

11.   Maxwell, D. M., Koplovitz, I., Worek, F. and Sweeney, R. E. (2008). A structure-activity analysis of the variation in oxime efficacy against nerve agents. Toxicology and Applied Pharmacology, 231(2): 157-164.

12.   Ashani, Y., Bhattacharjee, A. K., Leader, H., Saxena, A. and Doctor, B. P. (2003). Inhibition of cholinesterases with cationic phosphonyl oximes highlights distinctive properties of the charged pyridine groups of quaternary oxime reactivators. Biochemical Pharmacology, 66(2): 191-202.

13.   Worek, F., Eyer, P., Aurbek, N., Szinicz, L. and Thiermann, H. (2007). Recent advances in evaluation of oxime efficacy in nerve agent poisoning by in vitro analysis. Toxicology and Applied Pharmacology, 219 (2–3): 226-234.

14.   Musilek, K., Holas, O., Misik, J., Pohanka, M. and Novotny, L. (2010). Monooxime-monocarbamoyl bispyridinium xylene-linked reactivators of acetylcholinesterase-synthesis, in vitro and toxicity evaluation and docking studies. ChemMedChem, 5: 247-254.

15.   Kuca, K., Karasova, J. and Musilek, K. (2007). Development of new reactivators of tabun inhibited acetylcholinesterase and the evaluation of their efficacy by in vitro and in vivo methods. In Defence against the Effects of Chemical Hazards: Toxicology, Diagnosis and Medical Countermeasures, 17: pp. 1-12.

16.   Musilek, K., Komloova, M., Holas, O., Horova, A., Pohanka, M., Gunn-Moore, F. and Kuca, K. (2011). Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl linkage-Preparation, in vitro screening and molecular docking. Bioorganic and Medicinal Chemistry, 19 (2): 754-762.

17.   Pohanka, M., Jun, D. and Kuca, K. (2008). Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators. Talanta, 77 (1): 451-454.

18.   Koning, M. C., Joosen, M. J. A., Noort, D., van Zuylen, A., and Tromp, M. C. (2011). Peripheral site ligand–oxime conjugates: A novel concept towards reactivation of nerve agent-inhibited human acetylcholinesterase. Bioorganic & Medicinal Chemistry, 19(1): 588-594.

19.   Sit, R. K., Radić, Z., Gerardi, V., Garcia, E., Zhang, L., Katalinic, M., Amitai, G., Kovarik, Z., Fokin, V. V., Sharpless, K. B. and Taylor, P. (2011). New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. The Journal of Biological Chemistry. 286(22): 19422-19430.

20.   Gillon, E. and Renard, P. (2012). Phenyltetrahydroisoquinoline-pyridinaldoxime conjugates as efficient uncharged reactivators for the dephosphylation of inhibited human acetylcholinesterase. Journal of Medicinal Chemistry, 55: 10791-10795.

21.   Worek, F., Wille, T., Koller, M. and Thiermann, H. (2012). Reactivation kinetics of a series of related bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase Structure-activity relationships. Biochemical Pharmacology, 83(12): 1700-1706.

22.   McHardy, S. F., Bohmann, J. A., Corbett, M. R., Campos, B., Tidwell, M. W., Thompson, P. M. and McDonough, J. (2014). Design, synthesis, and characterization of novel, nonquaternary reactivators of GF-inhibited human acetylcholinesterase. Bioorganic and Medicinal Chemistry Letters, 24(7): 1711-1714.

23.   Wei, Z., Liu, Y., Wang, Y., Li, W., Zhou, X., Zhao, J. and Li, S. (2016). Novel nonquaternary reactivators showing reactivation efficiency for soman-inhibited human acetylcholinesterase. Toxicology Letters, 246: 1-6.

24.   Wei, Z., Liu, Y. Q, Wang, S. zheng, Yao, L., Nie, H. F., Wang, Y. and Li, S. (2017). Conjugates of salicylaldoximes and peripheral site ligands: Novel efficient nonquaternary reactivators for nerve agent-inhibited acetylcholinesterase. Bioorganic and Medicinal Chemistry, 25(16): 4497-4505.

25.   Ralph, E. C., Zhang, J. and Cashman, J. R. (2011). Amidine-oximes: Reactivators for organophosphate exposure. Journal of Medicinal Chemistry, 54: 3319-3330.

26.   Kalisiak, J., Ralph, E. C. and Cashman, J. R. (2012). Nonquaternary reactivators for organophosphate-inhibited cholinesterases. Journal of Medicinal Chemistry, 55(1): 465-474.

27.   Koning, M. C., Grol, M. Van. and Noort, D. (2011). Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicology Letters, 206 (1): 54-59.

28.   Wei, Z., Bi, H., Liu, Y., Nie, H., Yao, L. and Wang, S. (2018). Bioorganic chemistry design, synthesis and evaluation of new classes of nonquaternary reactivators for acetylcholinesterase inhibited by organophosphates. Bioorganic Chemistry, 81: 681-688.

29.   Mercey, G., Verdelet, T., Saint-André, G., Gillon, E., Wagner, A., Baati, R. and Renard, P. Y. (2011). First efficient uncharged reactivators for the dephosphylation of poisoned human acetylcholinesterase. Chemical Communications, 47(18): 5295–5297.

30.   Mercey, G., Verdelet, T., Renou, J., Kliachyna, M., Baati, R., Nachon, F. and Renard, P. Y. (2012). Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Accounts of Chemical Research, 45(5): 756-766.