Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 630 - 635
SYNTHESIS OF
SEMISYNTHETIC TRYPSIN-1,10-PHENANTHROLINE COMPLEXES WITH DIVALENT METAL IONS
FOR HYDROLYSIS OF AZOCASEIN
(Sintesis
Kompleks Separa Sintetik Tripsin-1,10-Fenantrolin dengan Ion Logam Divalen untuk
Hidrolisis Azokasin)
Mohd Basyaruddin Abdul Rahman1,2*, Azizah Misran2,
Muhammad Alif Mohammad Latif1,2, Emilia Abdulmalek1,2
1Integrated Chemical BioPhysics Research
2Department of Chemistry, Faculty of Science
Universiti Putra
Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
*Corresponding author: basya@upm.edu.my
Received: 30 March 2020;
Accepted: 2 September 2020; Published: 12 October 2020
Abstract
Modification of trypsin
from bovine pancreas was studied to understand the biomolecular interactions
between the protein and ligand, toward metal ion. A semisynthetic complex of
trypsin-1,10-phenanthroline (trypsin-PHN) was prepared and investigated for its
role in the hydrolysis of azocasein. Predicted results from molecular docking
studies aid in the comprehension of the protein-ligand system. PHN ligand
demonstrated the ability to provide more sites for interactions with metal ions
and contribute extensively to the development of a new generation of industrial
biocatalysts. The trypsin-PHN complex had an increment of 40% activity in the
hydrolysis of azocasein. In the presence of 5 mM Ca2+ ions
the activity was higher than native enzyme but decreased in the presence of Mg2+,
Zn2+ and Fe2+ ions, thus, providing additional insight
into potential inhibitors of the rational enzyme design.
Keywords: metalloenzyme,
semisynthetic, trypsin, biocatalyst, hydrolysis
Abstrak
Modifikasi tripsin
daripada pankreas anak lembu telah dikaji untuk mengetahui interaksi biomolekul
di antara protein dan ligan, dan ion logam. Satu kompleks separa sintetik
tripsin-1,10-fenantrolin (trypsin-PHN) telah
disediakan dan aktiviti terhadap hidrolisis azokasin telah dikaji. Hasil
jangkaan daripada kajian pendokkan molekul turut membantu dalam kajian sistem
protein-ligan ini. Ligan PHN menunjukkan kebolehan untuk memberikan lebih tapak
interaksi dengan ion logam yang berkeupayaan mencetus pembangunan dalam
generasi baru industi biomangkin. Kompleks tripsin-PHN menunjukkan peningkatan
aktiviti sebanyak 40% dalam hidrolisis azokasin. Kehadiran sebanyak 5 mM ion Ca2+
turut meningkatkan aktiviti berbanding enzim asal tetapi menurun dengan
kehadiran ion Mg2+, Zn2+ dan Fe2+. Maklumat
ini dapat membantu penghasilan perencat dalam rekabentuk enzim secara rasional.
Kata kunci: metaloenzim,
separa sintetik, tripsin, biomangkin, hidrolisis
References
1. Qi, D., Tann, C. M, Haring, D. and Distefano, M. D.
(2001). Generation of new enzymes via covalent modification of existing
proteins. Chemical Reviews, 101: 3081-3111.
2.
Mayer,
C., Gillingham, D. G., Ward, T. R. and Hilvert, D. (2011). An artificial
metalloenzyme for olefin metathesis, Chemical Communications, 47:
12068-12070.
3.
Heinisch,
T. and Ward, T. R. (2010). Design strategies for the creation of artificial
metalloenzymes, Current Opinion in Chemical Biology, 14(2), 184-199.
4.
Lu,
Y., Yeung, N., Sieracki, N. and Marshall, N. M. (2009). Design of functional
metalloproteins. Nature, 460, 855-862.
5.
Abdul
Rahman, M. B. and Latif, M. A. M. (2019). Interaction studies of putative
chemical ligands in binding sites of thermostable lipase from Geobacillus
zalihae strain T1. Malaysian Journal of Analytical Sciences, 23(4):
613-624.
6.
Abdul
Rahman, M. B., Jaafar A. H, Basri, M., Raja Abdul Rahman, R. N. Z. and Salleh,
A. B. (2014). Biomolecular design and receptor-ligand interaction of a
potential industrial biocatalyst: A thermostable
thermolysin-phosphoeth-anolamine-Ca2+ protein complex. Journal of
Advanced Catalysis Science and Technology, 1: 1-5.
7.
Villalonga,
R., Villalonga M. R. and Gomez L. (2000). Preparation and functional properties
of trypsin modified by carboxymethylcellulase. Journal of Molecular
Catalysis B: Enzymatic, 10: 483-490.
8.
Bradford,
M. M. (1976). A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
9.
Tomarelli,
R. M., Charney, J. and Harding, M. L. (1949). The use of azoalbumin as a
substrate in the colorimetric determination of peptic and tryptic activity. Journal
of Laboratory and Clinical Medicine, 34: 428-433.
10.
Morris,
G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K.
and Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm
and an empirical binding free energy function, Journal of Computational
Chemistry, 19: 1639-1662.
11.
Walczak,
M. M. and Flynn, N. T. (1998) Spectroelectrochemical study of the generation of
tris-(1,10-phenanthroline)iron(II/III) from μ-oxo-bis[aquabis(1,10-phenanthroline)iron(III)].
Journal of Electro-analytical Chemistry, 441(1–2): 43-49.
12.
Bao,
T. and Pawlyszyn, J. (2006). Role of calcium binding in protein structural
changes and phospholipid–protein interactions studied by capillary isoelectric
focusing with whole column imaging detection, Analytica Chimica Acta, 559(1):
1-8.
13.
Abdul
Rahman, M. B., Misran, A., Basri, M., Raja Abdul Rahman, R. N. Z., Salleh, A. B.
and Abdul Wahab, H. (2005). Screening and docking chemical ligands onto pocket
cavities of a protease for designing a biocatalyst. Biocatalysis and
Biotransformation, 23: 211-216.
14.
Ananthanarayanan,
V. S. and Kerman, A. (2006). Role of metal ions in ligand-receptor interaction:
insights from structural studies. Molecular and Cellular Endocrinology, 246:
53-59.
15.
Katz,
A. K., Glusker, J. P., Beebe, S. A. and Bock C. W. (1996). Calcium ion
coordination: A comparison with that of beryllium, magnesium, and zinc. Journal
of American Chemical Society, 118(24): 5752-5763.
16.
Steinreiber,
J. and Ward, T. R. (2008). Artificial metalloenzymes as selective catalysts in
aqueous media. Coordination Chemistry Reviews, 252: 751-766.