Malaysian Journal of Analytical Sciences Vol 24 No 4 (2020): 615 - 629

 

 

 

 

SCREENING OF PLANTS FOR INSECTICIDAL ACTIVITIES AGAINST ORIENTAL FRUIT FLY Bactrocera dorsalis (HENDEL) FOR PEST MANAGEMENT OF MANGO Mangifera indica

 

(Saringan Tumbuhan bagi Aktiviti Serangga Perosak Terhadap Lalat Buah Oriental Bactrocera dorsalis (Hendel) untuk Pengurusan Serangga Perosak Mangga Mangifera indica)

 

Danila S. Paragas1,2*, Kathlia D. C. Cruz1,  Elaida R. Fiegalan3

 

1School of Chemical, Biological and Materials Engineering and Sciences,

Mapua University, Intramuros, Manila, Philippines

2Department of Chemistry, College of Arts and Sciences

3Department of Crop Protection, College of Agriculture

Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines

 

*Corresponding author:  danilaparagas1010@clsu.edu.ph

 

 

Received: 20 November 2019; Accepted: 13 June 2020; Published:  11 August 2020

 

 

Abstract

The mango, Mangifera indica, is one of the many fruits exported by the Philippines. However, the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is becoming a threat to its production; thus, its control and management are now imperative. This research conducted a preliminary screening of different plants with insecticidal properties that could be used for the development of potential biocides. Twenty plants were screened for their insecticidal activities against B. dorsalis. The plant that showed the highest mortality was further investigated using various extraction methods such as hot infusion, maceration, hot continuous reflux (Soxhlet), and fermentation. Several solvents were also considered in the extraction, including rice wine, rice wash, vinegar, and distilled water. The extracts were tested in terms of mortality against B. dorsalis after 6, 12, and 24 hours of exposure using an improvised olfactometer. Azadirachta indica, Andrographis paniculata, Indigofera zollingeriana, and Lantana camara gave 100% mortality at 24 hours exposure, but A. indica was the most effective, having 46.67%, 91.67%, and 100% mortality at 6, 12, and 24 hours, respectively. Further investigations employing different extraction–solvent combinations revealed that fermentation of A. indica leaves using rice wash is the most economical method for extracting the active components against B. dorsalis and can be utilized in the development of biocide for mango pest management.

 

Keywords:  neem, biocide, fermentation, mangoes, pest management

 

Abstrak

Mangga, Mangifera indica adalah satu dari buah-buahan yang dieksport oleh Filipina. Namun, lalat buah oriental, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) menjadi ancaman bagi penghasilannya. Oleh itu, pengawalan dan pengurusan mestilah dimulakan. Kajian ini dijalankan melalui saringan awal bagi tumbuhan yang mempunyai sifat aktiviti serangga perosak yang boleh digunakan bagi pembangunan potensi biosida. Dua puluh tumbuhan telah disaring bagi mengkaji aktiviti serangga perosak terhadap B. dorsalis. Tumbuhan yang menunjukan kematian tertinggi telah dikaji lebih terperinci mengunakan pelbagai kaedah pengekstrakan seperti seduhan panas, maserasi, refluks berterusan panas (Soxhlet), dan fementasi. Pelarut berbeza juga dipertimbang semasa pengekstrakan termasuklah wain beras, basuhan beras, cuka dan air suling. Ekstrak yang diuji bagi kematian terhadap B. dorsalis selepas 6, 12 dan 24 jam pendedahan mengunakan olfaktometer yang telah ditambahbaik. Azadirachta indica, Andrographis paniculata, Indigofera zollingeriana, dan Lantana camara memberikan 100% kematian pada masa 24 jam pendedahan, tetapi A. Indica adalah paling efektif mempunyai 46.67%, 91.67%, dan 100% kematian masing-masing pada 6, 12 dan 24 jam. Kajian selanjutnya dijalankan dengan kombinasi pelarut pengekstrakan berbeza mendedahkan bahawa fementasi daun A. Indica mengunakan basuhan beras adalah kaedah paling ekonomikal bagi pengekstrakan komponen aktif melawan B. dorsalis dan boleh di manfaat bagi pembangunan biosida terhadap pengurusan serangga manga. 

 

Kata kunci:  margosa, biosida, fementasi, manga, pengurusan serangga

 

References

1.      Tharanathan, R. N., Yashoda, H. M., and Prabha, T. N. (2006).  Mango (Mangifera indica L.), The king of fruits–an overview.  Food Reviews International, 22(2): 95-123.

2.      Briones, R. M. (2013). Market structure and distribution of benefits from agricultural exports: The case of the Philippine mango industry (No. 2013–16). PIDS Discussion Paper Series.

3.      Hamamoto K. and Nago H. (2002).  Integrated management of fruit fly and its impact on yield of crops with effective microorganisms (a case study). In proceeding 7th International Conference on Kyusei Nature Farming. Christchurch, New Zealand. pp. 15-18.

4.      Weems, H. V., Heppner, J. B., Nation, J. L. and Fasulo, T. R. (2012). Oriental fruit fly, Bactrocera dorsalis (Hendel) (Insecta: Diptera: Tephritidae). Featured Creatures: Entomology and Nematology. Entomology Circulars, 21: 1-6.

5.      Philippine Statistics Authority (2016). Major fruit crops quarterly bulletin. Access from https://psa.gov.ph/sites/default/files/fruits_q4_2015.

6.      Kuppusamy, C. and Murgan, K. (2009). Mosquitocidal effect of Andrographis paniculata nees against the malaria vector, Anopheles stephensi Liston (Diptera: culicidae). International Journal of Integrative Biology, 5(2): 75-81.

7.      Bright, A. A., Babu, A., Ignacimuthu, S. and Dorn, S. (2001). Efficacy of crude extracts of Andrographis paniculata nees. on Callosobruchus chinensis L. during post harvest storage of cowpea. Indian Journal of Experimental Biology, 39(7): 715-718.  

8.      Edwin, E. S., Vasantha-Srinivasan, P., Senthil-Nathan, S., Thanigaivel, A., Ponsankar, A., Pradeepa, V. and Duraipandiyan, V. (2016). Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta tropica163: 167-178.

9.      Patel, S., Patel, J. K. and Sejal Patel, C. (2016). A review on a miracle fruits of Annona muricata. Journal of Pharmacognosy and Phytochemistry, 5(1): 137-148.

10.   Komansilan, A., Abadi, A. L., Yanuwiadi, B. and Kaligis, D. A. (2012). Isolation and identification of biolarvicide from soursop (Annona muricata Linn.) seeds to mosquito (Aedes aegypti) larvae. International Journal of Engineering & Technology, 12(3): 28-32.

11.   Kotkar, H. M., Mendki, P. S., Sadan, S. V. G. S., Jha, S. R., Upasani, S. M. and Maheshwari, V. L. (2002). Antimicrobial and pesticidal activity of partially purified flavonoids of Annona squamosa. Pest Management Science, 58(1): 33-37.

12.   Jaswanth, A., Ramanathan, P. and Ruckmani, K. (2002). Evaluation of mosquitocidal activity of Annona squamosa leaves against filarial vector mosquito, Culex quinquefasciatus say. Indian Journal of Experimental Biology, 40(3): 363-365.

13.   Nathan, S. S., Kalaivani, K. and Murugan, K. (2005). Effects of neem limonoids on the malaria vector Anopheles stephensi liston (Diptera: Culicidae). Acta Tropica, 96(1): 47-55.  

14.   Sabaldica, A. C. (2011). A primer on medicinal plants for livestock healthcare. Western Sustainable Agriculture Research & Education. Access from https://cdn.sare.org/wp-content/uploads/ 20171204135421/954566nmc-wsare-plant-herbal-medicine-for-livestock-booklet-all.pdf

15.   Gbeassor, M., Kedjagni, A. Y., Koumaglo, K., De Souza, C., Agbo, K., Aklikokou, K. and Amegbo, K. A. (1990). In Vitro antimalarial activity of six medicinal plants. Phytotherapy Research4(3): 115-117.

16.   Obico, J. J. A. and Ragragio, E. M. (2014). A survey of plants used as repellents against hematophagous insects by the Ayta people of Porac, Pampanga Province, Philippines. Philippine Science Letters7(1): 179-186.

17.   Pinto, Z. T., Sánchez, F. F., Santos, A. R. D., Amaral, A. C. F., Ferreira, J. L. P., Escalona-Arranz, J. C. and Queiroz, M. M. D. C. (2015). Chemical composition and insecticidal activity of Cymbopogon citratus essential oil from Cuba and Brazil against housefly. Revista Brasileira de Parasitologia Veterinária, 24(1): 36-44.

18.   Visetson, S., Milne, M. and Milne, J. (2001). Toxicity of 4, 11-Selinnadien-3-one from nutsedge (Cyperus rotundus L.) tuber extracts to diamondback moth larvae (Plutella xylostella L.), detoxification mechanisms and toxicity to non target species. Kasetsart Journal (Natural Science)35(3): 284-292.

19.   Areekul, S., Sinchaisri, P. and Tigvatananon, S. (1987). Effects of thai plant extracts on the oriental fruit fly. Kasetsart Journal (Natural Science), 21(4): 395-407.

20.   Simons, A. and Stewart, J. (1994). 2.2 Gliricidia sepium–A multipurpose forage tree legume. Access from https://pdfs.semanticscholar.org/e330/4eb3340bdeabd1af4a3322d6162602e16780.pdf.

21.   Hisaeda, A., Matsunami, K., Otsuka, H. and Takeda, Y. (2011). Flavonol glycosides from the leaves of Indigofera zollingerianaJournal of Natural Medicines65(2): 360-363.

22.   De Oliveira, C. F. R., Luz, L. A., Paiva, P. M. G., Coelho, L. C. B. B., Marangoni, S. and Macedo, M. L. R. (2011). Evaluation of seed coagulant Moringa oleifera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects. Process Biochemistry46(2): 498-504.

23.   Prabhu, K., Murugan, K., Nareshkumar, A., Ramasubramanian, N. and Bragadeeswaran, S. (2011). Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine, 1(2):124-129.

24.   Anees, A. M. (2008). Larvicidal activity of Ocimum sanctum Linn. (Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Parasitology Research103(6): 1451-1453.

25.   Banu, K. A. and Devaraj, A. (2012). Formulation of herbal pesticide towards effective biological control of scale insects in Psidium guajava L. International Journal of Pharmaceutical Research and Allied Sciences. 2: 2-13.

26.   Galvez, D. B. P. and Landrito, R. F. G. (2017). Insecticidal efficacy of hagonoy plant (Chromolaena odorata (L.) RM King & H. Rob.) and ZZ Plant (Zamioculcas zamiifolia (Lodd.) Engl.) against harlequin cockroach (Neostylopyga rhombifolia (Stoll, 1813)). In 52nd BIOTA Annual National Convention and Scientific Sessions, Philippine Normal University, Manila, Philippines. Access from https://biotaph.org/conferences/index.php/ conventions/52/paper/view/795

27.   Azmir, J., Zaidul,  I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A. and Sahena, F. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 117(4): 426-436.

28.   Hasmida, M., Liza, M., Nur Syukriah, A., Harisun, Y., Mohd Azizi, C. and Fadzilah Adibah,  A. (2015).  Total phenolic content and antioxidant activity of Quercus infectoria galls using supercritical CO2 extraction technique and its comparison with soxhlet extraction. Pertanika Journal of Science & Technology, 23 (2): 287-295.

29.   Zhang, H. F., Yang, X. H. and Wang, Y. (2011).  Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends in Food Science & Technolnology,  22(12): 672-688.

30.   Chemat, A, Lagha, A, AitAmar, H., Bartels, P. V. and Chemat, F.  (2004).  Comparison of conventional and ultrasound-assisted extraction of carvone and limonene from caraway seeds.  Flavour and Fragrance Journal, 19(3): 188-195.

31.   Tamang, J. P. and Kailasapathy, K. (2010). Fermented foods and beverages of the world. CRC Press.

32.   Palaniveloo, K. and Vairappan, C. S. (2013). Biochemical properties of rice wine produced from three different starter cultures. Journal of Tropical Biology & Conservation10: 31-41.

33.   Lin, F. H., Lin, J. Y., Gupta, R. D., Tournas, J. A., Burch, J. A., Selim, M. A.  and Pinnell, S. R. (2005). Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. Journal of Investigative Dermatology125(4): 826-832.

34.   Fang, Q., He, S., Xiao, Y. and Huang, Z. (2018). Effect of pH on volatile fatty acids (VFAs) in rice wash.  Desalination and Water Treatment112: 303-309.  

35.   Ho, C. W., Lazim, A. M., Fazry, S., Zaki, U. K. H. H. and Lim, S. J. (2017). Varieties, production, composition and health benefits of vinegars: A review. Food Chemistry221: 1621-1630.

36.   Chang, C. L., Cho, I. K., Li, Q. X., Manoukis, N. C., Vargas,  R. I. (2013).  A potential field suppression system for Bactrocera dorsalis (Hendel). Journal of Asia-Pacific Entomology  2013(4): 513-519.

37.   Mehlhorn, H., Al-Rasheid, K. A. and Abdel-Ghaffar, F. (2011). The neem tree story: Extracts that really work. Springer, Berlin, Heidelberg: pp. 77-108.

38.   Hasmida, M. N., Nur Syukriah, A. R., Liza, M. S. and Mohd Azizi, C. Y. (2014). Effect of different extraction techniques on total phenolic content and antioxidant activity of Quercus infectoria Galls. International Food Research Journal21(3): 1039-1043.

39.   Subramanian, S., Salleh, A. S., Bachmann, R. T., & Hossain, M. (2019). Simultaneous extraction and separation of oil and azadirachtin from seeds and leaves of Azadirachta indica using binary solvent extraction. Natural Product Sciences25(2): 150-156.     

40.   Ramírez‐Rodrigues, M. M., Balaban, M. O., Marshall, M. R. and Rouseff, R. L. (2011). Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: Fresh compared with dried. Journal of Food Science76(2): C212–C217.

41.   Verzelloni, E., Tagliazucchi, D. and Conte, A. (2007).  Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food Chemistry. 105(2): 564-571.

42.   Liu, Q., Tang, G. Y., Zhao, C. N., Gan, R. Y. and Li, H. B. (2019). Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants8(4): 78-89.

43.   Nisbet, A. J. (2000). Azadirachtin from the neem tree Azadirachta indica: Its action against insects. Anais da Sociedade Entomológica do Brasil29(4): 615-632.

44.   Sanchez, P. C. (2008). Philippine fermented foods: Principles and technology. UP Press. pp. 105-111.

45.   Larcia II, L. L., Estacio, R. and Dalmacio, L. M. (2011). Bacterial diversity in Philippine fermented mustard (burong mustasa) as revealed by 16S rRNA gene analysis. Beneficial Microbes2(4): 263-271.

46.   Ogbuewu, I. P., Odoemenam, V. U., Obikaonu, H. O., Opara, M. N., Emenalom, O. O., Uchegbu, M. C., Okoli, I. C., Esonu, B. O. and Iloeje, M. U. (2011). The growing importance of neem.  Research Journal of Medicinal Plants, 5(3): 230-245.

47.   Liby, K. T. and Sporn, M. B. (2012). Synthetic oleanane triterpenoids: Multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacological Reviews, 64(4): 972-1003.

48.   Kim, H. S., Zhang, Y. H., Fang, L. H. and Lee, M. K. (1999). Effects of ginsenosides on bovine adrenal tyrosine hydroxylase. Journal of Ethnopharmacology, 66(1): 107-111.

49.   Depetris-Chauvin, A., Galagovsky, D. and Grosjean, Y. (2015). Chemicals and chemoreceptors: Ecologically relevant signals driving behavior in drosophila. Frontiers in Ecolology and Evolution,         3(41): 1-21.

50.   Thoma, V., Kobayashi, K. and Tanimoto, H. (2017). The role of the gustatory system in the coordination of feeding. Eneuro, 4(6): 1-7.

51.   Liu, T., Dartevelle, L., Yuan, C., Wei, H., Wang, Y., Ferveur, J. F. and Guo, A. (2008). Increased dopamine level enhances male-male courtship in drosophila. Journal of Neuroscience, 28(21): 5539-5546.

52.   Tan, K. H., Nishida, R., Jang, E. B. and Shelly, T. E. (2014). Pheromones, male lures, and trapping of tephritid fruit flies. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies. Springer, Dordrecht: pp. 15-74.

53.   Hee, A. K. W. and Tan, K. H. (2004). Male sex pheromonal components derived from methyl eugenol in the hemolymph of the fruit fly Bactrocera papayaeJournal of Chemical Ecology30(11): 2127-2138.