Malaysian Journal of Analytical Sciences Vol 24 No 4 (2020): 484 - 494

 

 

 

 

LIGNIN FROM OIL PALM FROND UNDER SUBCRITICAL PHENOL CONDITIONS AS A PRECURSOR FOR CARBON FIBER PRODUCTION

 

(Lignin daripada Pelepah Kelapa Sawit dibawah keadaan Subgenting Fenol sebagai Produk Perantaraan bagi Penghasilan Serat Karbon)

 

Khalidatul Athirah Khalid, Vijayaletchumy Karunakaran, Asimi Ana Ahmad, Khairul Faizal Pa’ee, Norfahana Abd-Talib, Tau Len-Kelly Yong*

 

Universiti Kuala Lumpur,

Branch Campus Malaysian Institute of Chemical and Engineering Technology,

78000 Alor Gajah, Melaka, Malaysia

 

*Corresponding author:  kytlen@unikl.edu.my

 

 

Received: 20 November 2019; Accepted: 16 June 2020;  Published:  11 August 2020

 

 

Abstract

The market price of carbon fiber which is considerably high, has limited its application as a value-added material. Lignin, a natural source that can be obtained from oil palm frond (OPF) is a promising precursor for carbon fiber production. This study aims to determine the feasibility of OPF lignin extracted under subcritical phenol conditions as a precursor for carbon fiber. The focus of this study is to determine the fundamental properties (ash content and volatile content) of the produced lignophenol produced based on the effect of reaction parameters such as temperature (260–300 °C), reaction time (5–30 minutes), and solid loading (6 and 10 g). The results indicate that the lowest ash content and volatile content of 9.87% and 6.45% was obtained at 260 °C, 5 minutes, and 6 g solid loading respectively. It can be further concluded that low reaction temperature as well as time and higher solid loading produced lignophenol with low ash and volatile content under subcritical phenol conditions.

 

Keywords:  lignin, carbon fiber, subcritical fluid, oil palm frond, lignophenol

 

Abstrak

Harga pasaran serat karbon yang tinggi telah menghadkan penggunaannya sebagai bahan nilai tambahan. Lignin merupakan sumber asli yang boleh dihasilkan daripada pelepah kelapa sawit dan mempunyai potensi sebagai bahan pengantaraan untuk penghasilan serat karbon. Tujuan kajian ini dijalankan adalah untuk menentukan kebolehgunaan lignin yang diekstrak daripada pelepah kelapa sawit dibawah keadaan subgenting fenol sebagai bahan pengantaraan untuk serat karbon. Tumpuan kajian ini adalah untuk menentukan sifat-sifat asas (kandungan abu dan kandungan meruap) lignophenol yang dihasilkan berdasarkan kesan parameter tindak balas seperti suhu (260–300 °C), masa (5–30 minit) dan kandungan pepejal (6 dan 10 g). Hasil kajian menunjukkan bahawa kandungan abu dan kandungan meruap terendah sebanyak 9.87% dan 6.45% didapati pada suhu 260 °C, 5 minit dan 6 g kandungan pepejal. Kesimpulan dari kajian ini mendapati bahawa suhu tindak balas, masa, dan muatan pepejal yang sederhana mampu menghasilkan lignophenol dengan kandungan abu and kandungan meruap yang rendah dibawah keadaan subgenting fenol.

 

Kata kunci:  lignin, serat karbon, cecair subgenting, pelepah kelapa sawit, lignofenol

 

References

1.      Das, S., Warren, J., West, D. and Schexnayder, S. M. (2016). Global carbon fiber composites supply chain competitiveness analysis. Access from http://www.nrel.gov/docs/fy16osti/66071.pdf. [Access online 23 January 2019].

2.      Malaysian Palm Oil Board (2019). Economics & industrial development division (area). Access from http://www.bepi.mpob.gov.my. [Access online 1 February 2019].

3.      Barros, A. J., Ferrara, L. and Martinelli, E. (2017). Recent advances on green concrete for structural purposes. Springer, Cham: pp 197-331.

4.      Graglia, M., Kanna, N. and Esposito, D. (2015). Lignin refinery: Towards the preparation of renewable aromatic building blocks. ChemBioEng Reviews, 2(6): 377-392.

5.      Neata, G., Campeanu, G., Popescu, M. I., Popa, O., Babeanu, N., Basaraba, A. and Popescu, D. (2015). Lignin extraction from corn biomass using supercritical extraction. Romanian Biotechnological Letters, 20(3): 10406-10412.

6.      Li, Q., Woodhead, A. L., Church, J. S. and Naebe, M. (2018). On the detection of carbon fibre storage contamination and its effect on the fibre–matrix interface. Scientific Reports, 8(1): 16446.

7.      Baker, F. S., Griffith, W. L. and Compere, A. L. (2005). Low-cost carbon fibers from renewable resources. Access from . [Access online 3 March 2019].

8.      Nguyen, T. D. H., Maschietti, M., Åmand, L. E., Vamling, L., Olausson, L., Andersson, S. I. and Theliander, H. (2014). The effect of temperature on the catalytic conversion of kraft lignin using near-critical water. Bioresource Technology, 170: 196-203.

9.      Zhu, G., Zhu, X., Xiao, Z., Zhou, R., Zhu, Y. and Wan, X. (2014). Kinetics of peanut shell pyrolysis and hydrolysis in subcritical water. Journal of Material Cycles and Waste Management, 16(3): 546-556.

10.   Sun, P., Heng, M., Sun, S. and Chen, J. (2010). Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy, 35(12): 5421-5429.

11.   Zhao, C., Jiang, E. and Chen, A. (2017). Volatile production from pyrolysis of cellulose, hemicellulose and lignin. Journal of the Energy Institute, 90(6): 902-913.

12.   Alvarez-Vasco, C., Ma, R., Quintero, M., Guo, M., Geleynse, S., Ramasamy, K. K. and Zhang, X. (2016). Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chemistry, 18(19): 5133-5141.

13.   Marcus, Y. (2018). Extraction by subcritical and supercritical water, methanol, ethanol and their mixtures. Separations, 5(1): 4.

14.   Ko, J. K., Kim, Y., Ximenes, E. and Ladisch, M. R. (2015). Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 112(2): 252-262.

15.   Machmudah, S., Wahyudiono, W., Kanda, H., Sasaki, M. and Goto, M. (2015). Hot compressed water extraction of lignin by using a flow-through reactor. Engineering Journal, 19(4): 25-44.

16.   Saisu, M., Sato, T., Watanabe, M., Adschiri, T. and Arai, K. (2003). Conversion of lignin with supercritical water-phenol mixtures. Energy & Fuels, 17(4): 922-928.

17.   Takada, M., Tanaka, Y., Minami, E. and Saka, S. (2016). Comparative study of the topochemistry on delignification of Japanese beech (Fagus crenata) in subcritical phenol and subcritical water. Holzforschung, 70(11): 1047-1053.

18.   Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J. and Templeton, D. (2008). Preparation of samples for compositional analysis. Access from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1. 1.693.6586& rep=rep1&ty pe=pdf. [Access online 12 June 2018].

19.   Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Access from http://www.academia.edu/download/34289991/ Determination-Structural-Carbohydrates-L....pdf. [Access online 12 June 2018].

20.   TAPPI (1993). Ash in Wood, Pulp, Paper and Paperboard: Combustion at 900 °C (T 413 om-93). Access from . [Access online 2 February 2019].

21.   Luo, J. (2010). Lignin-based carbon fiber. Thesis of Doctoral Degree, University of Maine, United State of America.

22.   Braz, C. E. M. and Crnkovic, P. C. G. M. (2014). Physical-chemical characterization of biomass samples for application in pyrolysis process. Chemical Engineering Transactions, 37: 523-528.

23.   Lu, Y., Lu, Y. C., Hu, H. Q., Xie, F. J., Wei, X. Y. and Fan, X. (2017). Structural characterization of lignin and its degradation products with spectroscopic methods. Journal of Spectroscopy, 2017: 1-15.

24.   Omar, N., N, Abdullah, N, Mustafa, I., S. and Sulaiman, F. (2018). Characterization of oil palm frond for bio-oil production. ASM Science Journal, 11(1): 9-22.

25.   Tan, J. P., Jahim, J. M., Harun, S., Wu, T. Y. and Mumtaz, T. (2016). Utilization of oil palm fronds as a sustainable carbon source in biorefineries. International Journal of Hydrogen Energy, 41(8): 4896-4906.

26.   Kumneadklang, S., Larpkiattaworn, S., Niyasom, C. and Sompong, O. (2015). Bioethanol production from oil palm frond by simultaneous saccharification and fermentation. Energy Procedia, 79: 784-790.

27.   Wunna, K., Nakasaki, K., Auresenia, J. L., Abella, L. C. and Gaspillo, P. D. (2017). Effect of alkali pretreatment on removal of lignin from sugarcane bagasse. Chemical Engineering Transactions, 56: 1831–1836.

28.   Canilha, L., Santos, V. T., Rocha, G. J., e Silva, J. B. A., Giulietti, M., Silva, S. S. and Carvalho, W. (2011). A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. Journal of Industrial Microbiology & Biotechnology, 38(9): 1467-1475.

29.   Qu, W., Liu, J., Xue, Y., Wang, X. and Bai, X. (2018). Potential of producing carbon fiber from biorefinery corn stover lignin with high ash content. Journal of Applied Polymer Science, 135(4): 45736.

30.   Loh, S. K. (2017). The potential of the malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management, 141: 285-298.

31.   Kong, S. H., Loh, S. K., Bachmann, R. T., Rahim, S. A. and Salimon, J. (2014). Biochar from oil palm biomass: A review of its potential and challenges. Renewable and Sustainable Energy Reviews, 39: 729-739.

32.   EU-Malaysia Chamber of Commerce and Industry (EUMCCI). (2017). Oil palm biomass & biogas in Malaysia, 2017 potentials for European SMES. Access [Access online 3 January 2019].

33.   Malaysian Industry-Government Group for High Technology (MIGHT). (2013). Malaysian biomass industry action plan 2020 driving SMEs towards sustainable future. Access from [Access online 3 January 2019]

34.   Kabir, G., Din, A. M. and Hameed, B. H. (2017). Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study. Bioresource Technology, 241: 563-572.

35.   Alias, N. B., Ibrahim, N., Hamid, M. K. A., Hasbullah, H., Ali, R. R. and Kasmani, R. M. (2015). Investigation of oil palm wastes’ pyrolysis by thermo-gravimetric analyzer for potential biofuel production. Energy Procedia, 75: 78-83.

36.   García, R., Pizarro, C., Lavín, A. G. and Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103(1): 249-258.

37.   Aldaeus, F., Olsson, A. M. and Stevanic, J. S. (2017). Miniaturized determination of ash content in kraft lignin samples using oxidative thermogravimetric analysis. Nordic Pulp & Paper Research Journal, 32(2): 280-282.

38.   Sameni, J., Krigstin, S., dos Santos Rosa, D., Leao, A. and Sain, M. (2013). Thermal characteristics of lignin residue from industrial processes. BioResources, 9(1): 725-737.

39.   Attwenger, A. (2014). Value-added lignin-based carbon fiber from organosolv fractionation of poplar and switchgrass. Thesis of Master Degree, University of Tennessee, United State of America.

40.   Mäkelä, M., Benavente, V. and Fullana, A. (2015). Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties. Applied Energy, 155: 576­–584.

41.   Shakya, R., Whelen, J., Adhikari, S., Mahadevan, R. and Neupane, S. (2015). Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Research, 12: 80-90.

42.   Mäkelä, M., Fullana, A. and Yoshikawa, K. (2016). Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock. Energy Conversion and Management, 121: 402-408.

43.   Luo, J., Genco, J., Cole, B. J. and Fort, R. C. (2011). Lignin recovered from the near-neutral hemicellulose extraction process as a precursor for carbon fiber. BioResources, 6(4): 4566­­-4593.

44.   Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A. and Lappas, A. A. (2014). A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis, 105: 143-150.

45.   Nanda, S., Reddy, S. N., Vo, D. V. N., Sahoo, B. N. and Kozinski, J. A. (2018). Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production. Energy Science & Engineering, 6(5): 448-459.

46.   Sulaiman, S. A., Balamohan, S., Moni, M. N. Z., Atnaw, S. M. and Mohamed, A. O. (2015). Feasibility study of gasification of oil palm fronds. Journal of Mechanical Engineering and Sciences, 9:1744-1757.

47.   Yang, W. (2015). Degradation mechanism of biomass in subcritical water and applications of the remained solid char. Thesis of Bachelor Degree, Okayama University, Japan.

48.   Subramaniam, V., Chow, M. C. and Ma, A. N. (2004). Energy database of the oil palm. Palm Oil Engineering Bulletin, 70(94): 29-42.

49.   Abnisa, F., Arami-Niya, A., Daud, W. W., Sahu, J. N. and Noor, I. M. (2013). Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Conversion and Management, 76: 1073-1082.

50.   Meilany, D., Kresnowati, M. T. A. P. and Setiadi, T. (2018). Temperature, solid loading and time effects on recovery of sugar from OPEFB. MATEC Web of Conferences, 156: 03022.