Malaysian
Journal of Analytical Sciences Vol 24 No 4
(2020): 484 - 494
LIGNIN FROM OIL PALM FROND UNDER SUBCRITICAL
PHENOL CONDITIONS AS A PRECURSOR FOR CARBON FIBER PRODUCTION
(Lignin
daripada Pelepah Kelapa Sawit dibawah keadaan Subgenting Fenol sebagai Produk
Perantaraan bagi Penghasilan Serat Karbon)
Khalidatul
Athirah Khalid, Vijayaletchumy Karunakaran, Asimi Ana Ahmad, Khairul Faizal Pa’ee, Norfahana
Abd-Talib, Tau Len-Kelly Yong*
Universiti Kuala
Lumpur,
Branch Campus Malaysian
Institute of Chemical and Engineering Technology,
78000 Alor Gajah,
Melaka, Malaysia
*Corresponding
author: kytlen@unikl.edu.my
Received: 20 November 2019; Accepted: 16 June 2020; Published:
11 August 2020
Abstract
The market price of carbon fiber
which is considerably high, has limited its application as a value-added
material. Lignin, a natural source that can be obtained from oil palm frond
(OPF) is a promising precursor for carbon fiber production. This study aims to
determine the feasibility of OPF lignin extracted under subcritical phenol
conditions as a precursor for carbon fiber. The focus of this study is to
determine the fundamental properties (ash content and volatile content) of the
produced lignophenol produced based on the effect of reaction parameters such
as temperature (260–300 °C), reaction time (5–30 minutes), and solid loading (6
and 10 g). The results indicate that the lowest ash content and volatile
content of 9.87% and 6.45% was obtained at 260 °C, 5 minutes, and 6 g solid
loading respectively. It can be further concluded that low reaction temperature
as well as time and higher solid loading produced lignophenol with low ash and
volatile content under subcritical phenol conditions.
Keywords: lignin,
carbon fiber, subcritical fluid, oil palm frond, lignophenol
Abstrak
Harga pasaran serat karbon
yang tinggi telah menghadkan penggunaannya sebagai bahan nilai tambahan. Lignin
merupakan sumber asli yang boleh dihasilkan daripada pelepah kelapa sawit dan
mempunyai potensi sebagai bahan pengantaraan untuk penghasilan serat karbon.
Tujuan kajian ini dijalankan adalah untuk menentukan kebolehgunaan lignin yang
diekstrak daripada pelepah kelapa sawit dibawah keadaan subgenting fenol
sebagai bahan pengantaraan untuk serat karbon. Tumpuan kajian ini adalah untuk
menentukan sifat-sifat asas (kandungan abu dan kandungan meruap) lignophenol
yang dihasilkan berdasarkan kesan parameter tindak balas seperti suhu (260–300
°C), masa (5–30 minit) dan kandungan pepejal (6 dan 10 g). Hasil kajian
menunjukkan bahawa kandungan abu dan kandungan meruap terendah sebanyak 9.87%
dan 6.45% didapati pada suhu 260 °C, 5 minit dan 6 g kandungan pepejal.
Kesimpulan dari kajian ini mendapati bahawa suhu tindak balas, masa, dan muatan
pepejal yang sederhana mampu menghasilkan lignophenol dengan kandungan abu and
kandungan meruap yang rendah dibawah keadaan subgenting fenol.
Kata
kunci: lignin, serat karbon,
cecair subgenting, pelepah kelapa sawit, lignofenol
References
1.
Das, S., Warren, J., West, D. and Schexnayder, S. M. (2016). Global
carbon fiber composites supply chain competitiveness analysis. Access from http://www.nrel.gov/docs/fy16osti/66071.pdf. [Access online 23 January 2019].
2. Malaysian Palm Oil Board
(2019). Economics & industrial development division (area). Access from
http://www.bepi.mpob.gov.my. [Access online 1 February 2019].
3.
Barros, A. J., Ferrara, L. and Martinelli, E. (2017). Recent
advances on green concrete for structural purposes. Springer, Cham: pp 197-331.
4.
Graglia, M., Kanna, N. and Esposito, D. (2015). Lignin refinery: Towards
the preparation of renewable aromatic building blocks. ChemBioEng
Reviews, 2(6): 377-392.
5.
Neata, G., Campeanu, G., Popescu, M. I., Popa, O., Babeanu, N.,
Basaraba, A. and Popescu, D. (2015). Lignin extraction from corn biomass using
supercritical extraction. Romanian Biotechnological Letters, 20(3):
10406-10412.
6.
Li, Q., Woodhead, A. L., Church, J. S. and Naebe, M. (2018). On the
detection of carbon fibre storage contamination and its effect on the
fibre–matrix interface. Scientific Reports, 8(1): 16446.
7. Baker, F. S., Griffith,
W. L. and Compere, A. L. (2005). Low-cost carbon fibers from renewable
resources. Access from .
[Access
online 3 March 2019].
8.
Nguyen, T. D. H., Maschietti, M., Åmand, L. E., Vamling, L., Olausson,
L., Andersson, S. I. and Theliander, H. (2014). The effect of temperature on
the catalytic conversion of kraft lignin using near-critical water. Bioresource
Technology, 170: 196-203.
9.
Zhu, G., Zhu, X., Xiao, Z., Zhou, R., Zhu, Y. and Wan, X. (2014).
Kinetics of peanut shell pyrolysis and hydrolysis in subcritical water. Journal
of Material Cycles and Waste Management, 16(3): 546-556.
10.
Sun, P., Heng, M., Sun, S. and Chen, J. (2010). Direct liquefaction of
paulownia in hot compressed water: Influence of catalysts. Energy, 35(12):
5421-5429.
11.
Zhao, C., Jiang, E. and Chen, A. (2017). Volatile production from
pyrolysis of cellulose, hemicellulose and lignin. Journal of the Energy
Institute, 90(6): 902-913.
12.
Alvarez-Vasco, C., Ma, R., Quintero, M., Guo, M., Geleynse, S.,
Ramasamy, K. K. and Zhang, X. (2016). Unique low-molecular-weight lignin with
high purity extracted from wood by deep eutectic solvents (DES): A source of
lignin for valorization. Green Chemistry, 18(19): 5133-5141.
13.
Marcus, Y. (2018). Extraction by subcritical and supercritical water,
methanol, ethanol and their mixtures. Separations, 5(1): 4.
14.
Ko, J. K., Kim, Y., Ximenes, E. and Ladisch, M. R. (2015). Effect of
liquid hot water pretreatment severity on properties of hardwood lignin and
enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 112(2):
252-262.
15.
Machmudah, S., Wahyudiono, W., Kanda, H., Sasaki, M. and Goto, M.
(2015). Hot compressed water extraction of lignin by using a flow-through
reactor. Engineering Journal, 19(4): 25-44.
16.
Saisu, M., Sato, T., Watanabe, M., Adschiri, T. and Arai, K. (2003).
Conversion of lignin with supercritical water-phenol mixtures. Energy
& Fuels, 17(4): 922-928.
17.
Takada, M., Tanaka, Y., Minami, E. and Saka, S. (2016). Comparative
study of the topochemistry on delignification of Japanese beech (Fagus
crenata) in subcritical phenol and subcritical water. Holzforschung, 70(11):
1047-1053.
18.
Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J. and
Templeton, D. (2008). Preparation of samples for compositional
analysis. Access from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.693.6586& rep=rep1&ty pe=pdf. [Access online 12 June 2018].
19.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton,
D. and Crocker, D. (2008). Determination of structural carbohydrates and lignin
in biomass. Access from http://www.academia.edu/download/34289991/ Determination-Structural-Carbohydrates-L....pdf. [Access online 12 June 2018].
20.
TAPPI (1993). Ash
in Wood, Pulp, Paper and Paperboard: Combustion at 900 °C (T 413 om-93). Access from . [Access online 2 February 2019].
21. Luo, J.
(2010). Lignin-based carbon fiber. Thesis of Doctoral Degree, University
of Maine, United State of America.
22.
Braz, C. E. M. and Crnkovic, P. C. G. M. (2014). Physical-chemical
characterization of biomass samples for application in pyrolysis process. Chemical
Engineering Transactions, 37: 523-528.
23.
Lu, Y., Lu, Y. C., Hu, H. Q., Xie, F. J., Wei, X. Y. and Fan, X. (2017).
Structural characterization of lignin and its degradation products with
spectroscopic methods. Journal of Spectroscopy, 2017: 1-15.
24.
Omar, N., N, Abdullah, N, Mustafa, I., S. and Sulaiman, F. (2018).
Characterization of oil palm frond for bio-oil production. ASM Science Journal, 11(1): 9-22.
25.
Tan, J. P., Jahim, J. M., Harun, S., Wu, T. Y. and Mumtaz, T. (2016).
Utilization of oil palm fronds as a sustainable carbon source in
biorefineries. International Journal of Hydrogen Energy, 41(8):
4896-4906.
26.
Kumneadklang, S., Larpkiattaworn, S., Niyasom, C. and Sompong, O.
(2015). Bioethanol production from oil palm frond by simultaneous
saccharification and fermentation. Energy Procedia, 79:
784-790.
27.
Wunna, K., Nakasaki, K., Auresenia, J. L., Abella, L. C. and Gaspillo,
P. D. (2017). Effect of alkali pretreatment on removal of lignin from sugarcane
bagasse. Chemical Engineering Transactions, 56: 1831–1836.
28.
Canilha, L., Santos, V. T., Rocha, G. J., e Silva, J. B. A., Giulietti,
M., Silva, S. S. and Carvalho, W. (2011). A study on the pretreatment of a
sugarcane bagasse sample with dilute sulfuric acid. Journal of
Industrial Microbiology & Biotechnology, 38(9): 1467-1475.
29.
Qu, W., Liu, J., Xue, Y., Wang, X. and Bai, X. (2018). Potential of producing
carbon fiber from biorefinery corn stover lignin with high ash content. Journal
of Applied Polymer Science, 135(4): 45736.
30.
Loh, S. K. (2017). The potential of the malaysian oil palm biomass as a
renewable energy source. Energy Conversion and Management, 141:
285-298.
31.
Kong, S. H., Loh, S. K., Bachmann, R. T., Rahim, S. A. and Salimon, J.
(2014). Biochar from oil palm biomass: A review of its potential and
challenges. Renewable and Sustainable Energy Reviews, 39:
729-739.
32.
EU-Malaysia
Chamber of Commerce and Industry (EUMCCI). (2017). Oil palm biomass &
biogas in Malaysia, 2017 potentials for European SMES. Access [Access online 3 January 2019].
33.
Malaysian
Industry-Government Group for High Technology (MIGHT). (2013). Malaysian
biomass industry action plan 2020 driving SMEs towards sustainable future.
Access from [Access
online 3 January 2019]
34.
Kabir, G., Din, A. M. and Hameed, B. H. (2017). Pyrolysis of oil palm
mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A
comparative study. Bioresource Technology, 241: 563-572.
35.
Alias, N. B., Ibrahim, N., Hamid, M. K. A., Hasbullah, H., Ali, R. R.
and Kasmani, R. M. (2015). Investigation of oil palm wastes’ pyrolysis by
thermo-gravimetric analyzer for potential biofuel production. Energy
Procedia, 75: 78-83.
36.
García, R., Pizarro, C., Lavín, A. G. and Bueno, J. L. (2012).
Characterization of Spanish biomass wastes for energy use. Bioresource
Technology, 103(1): 249-258.
37.
Aldaeus, F., Olsson, A. M. and Stevanic, J. S. (2017). Miniaturized
determination of ash content in kraft lignin samples using oxidative
thermogravimetric analysis. Nordic Pulp & Paper Research Journal, 32(2):
280-282.
38.
Sameni, J., Krigstin, S., dos Santos Rosa, D., Leao, A. and Sain, M.
(2013). Thermal characteristics of lignin residue from industrial
processes. BioResources, 9(1): 725-737.
39.
Attwenger, A. (2014). Value-added lignin-based carbon fiber from
organosolv fractionation of poplar and switchgrass. Thesis of Master
Degree, University of Tennessee, United State of America.
40.
Mäkelä, M., Benavente, V. and Fullana, A. (2015). Hydrothermal
carbonization of lignocellulosic biomass: Effect of process conditions on
hydrochar properties. Applied Energy, 155: 576–584.
41.
Shakya, R., Whelen, J., Adhikari, S., Mahadevan, R. and Neupane, S.
(2015). Effect of temperature and Na2CO3 catalyst on
hydrothermal liquefaction of algae. Algal Research, 12: 80-90.
42.
Mäkelä, M., Fullana, A. and Yoshikawa, K. (2016). Ash behavior during
hydrothermal treatment for solid fuel applications. Part 1: Overview of
different feedstock. Energy Conversion and Management, 121:
402-408.
43.
Luo, J., Genco, J., Cole, B. J. and Fort, R. C. (2011). Lignin recovered
from the near-neutral hemicellulose extraction process as a precursor for
carbon fiber. BioResources, 6(4): 4566-4593.
44.
Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C.
M., Pilavachi, P. A. and Lappas, A. A. (2014). A study of lignocellulosic
biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and
lignin. Journal of Analytical and Applied Pyrolysis, 105:
143-150.
45.
Nanda, S., Reddy, S. N., Vo, D. V. N., Sahoo, B. N. and Kozinski, J. A.
(2018). Catalytic gasification of wheat straw in hot compressed (subcritical
and supercritical) water for hydrogen production. Energy Science &
Engineering, 6(5): 448-459.
46.
Sulaiman, S. A., Balamohan, S., Moni, M. N. Z., Atnaw, S. M. and
Mohamed, A. O. (2015). Feasibility study of gasification of oil palm
fronds. Journal of Mechanical Engineering and Sciences, 9:1744-1757.
47.
Yang, W. (2015). Degradation mechanism of biomass in subcritical water
and applications of the remained solid char. Thesis of Bachelor Degree,
Okayama University, Japan.
48.
Subramaniam, V., Chow, M. C. and Ma, A. N. (2004). Energy database of
the oil palm. Palm Oil Engineering Bulletin, 70(94): 29-42.
49.
Abnisa, F., Arami-Niya, A., Daud, W. W., Sahu, J. N. and Noor, I. M.
(2013). Utilization of oil palm tree residues to produce bio-oil and bio-char
via pyrolysis. Energy Conversion and Management, 76:
1073-1082.
50.
Meilany, D., Kresnowati, M. T. A. P. and Setiadi, T. (2018).
Temperature, solid loading and time effects on recovery of sugar from OPEFB. MATEC
Web of Conferences, 156: 03022.