Malaysian Journal of Analytical Sciences Vol 24 No 4 (2020): 464 - 483

 

 

 

 

A REVIEW ON APPLICATIONS OF GOLD AND SILVER-BASED SORBENTS IN SOLID PHASE EXTRACTION AND SOLID PHASE MICROEXTRACTION

 

(Satu Ulasan Penggunaan Pengerap Berasaskan Aurum dan Argentum dalam Pengekstrakan Fasa Pepejal dan Pengekstrakan Mikro Fasa Pepejal)

 

Wan Aini Wan Ibrahim1, 2*, Zetty Azalea Sutirman1, Jawed Qaderi1,3, Kasimu Abu Bakar1,4, Siti Hajar Md Basir1, Imad Eddine Aouissi1

 

1Department of Chemistry, Faculty of Science

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

 Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

3Department of Physical Chemistry, Faculty of Chemistry,

Kabul University, Jamal Mina 1001 Kabul, Afghanistan

4Department of Chemistry, Faculty of Science,

Sokoto State University, Sokoto, Nigeria

 

*Corresponding author:  waini@utm.my,  wanaini@kimia.fs.utm.my

 

 

Received: 5 April 2020; Accepted: 7 June 2020;  Published:  11 August 2020

 

 

Abstract

Organic and inorganic pollutants and contaminants are considered harmful to ecosystem, even at low or trace-level concentrations. Several studies have been performed to degrade or remove these contaminants from environmental matrices and the use of pre-concentration approaches such as solid phase extraction (SPE) and solid phase microextraction (SPME) for their quantitation has been developed and showed great demand as an essential module to upgrade both practical efficiency and analytical sensitivity. Gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs) could be used as a sorbents prior to the combined high efficient separation or extraction methods with different detection techniques. Along with the rapid development of nanotechnology in material science, numerous nanomaterials include Au NPs and Ag NPs have been developed with particularly useful applications in analytical chemistry. Au NPs and Ag NPs are attracting a great deal of attention for their use in various technologies, including catalysis, optical and electronic devices, and separation science. In this review, recent progress of Ag NPs applied in SPE and SPME have been summarized and discussed. Au NPs and Ag NPs materials are evaluated for their unusual performance in various applications from environmental trace sample analysis to clinical investigations. Such great variety of uses makes nanomaterials kind of versatile tools in sample preparation for almost all categories of analytes.

 

Keywords: silver nanoparticles, gold nanoparticles, pre-concentration, solid phase extraction, solid phase microextraction

 

Abstrak

Bahan pencemar organik dan tak organik dianggap berbahaya kepada ekosistem, walaupun, pada kepekatan tahap rendah atau surih. Beberapa kajian telah dilakukan untuk nyahdegradasi atau penyingkiran bahan pencemar ini dari matriks sekitaran dan penggunaan pendekatan pra-pemekatan seperti pengekstrakan fasa pepejal (SPE) dan pengekstrakan mikro fasa pepejal (SPME) untuk penentuan kuantitatif telah dibangunkan dan menunjukkan permintaan yang besar sebagai modul penting untuk meningkatkan kecekapan praktik dan sensitiviti analisis. Zarah nano emas (Au NPs) dan perak (Ag NPs) boleh digunakan sebagai pengerap sebelum gabungan pemisahan kecekapan tinggi atau kaedah pengekstrakan dengan teknik pengesanan yang berbeza. Seiring dengan perkembangan nanoteknologi yang pesat dalam sains bahan, banyak bahan nano termasuk Au NPs dan Ag NPs telah dibangunkan terutama aplikasi berguna dalam kimia analisis. Au NPs dan Au NPs menarik banyak perhatian untuk penggunaannya dalam pelbagai teknologi termasuklah pemangkinan, alat optik dan elektronik, dan sains pemisahan. Dalam ulasan ini, kemajuan terkini Au NPs dan Ag NPs dalam SPE dan SPME dirumus dan dibincangkan. Bahan Au NPs dan Ag NPs dinilai untuk prestasi luar biasanya dalam pelbagai aplikasi dari analisis sampel surih alam sekitar kepada penyiasatan klinikal. Kepelbagaian penggunaan bahan nano menjadikannya sebagai peranti serba boleh dalam penyediaan sampel untuk hampir semua kategori analit.

.

Kata kunci:   zarah-nano aurum, zarah-nano argentum, pra-pemekatan, pengekstrakan fasa pepejal, pengekstrakan mikro fasa pepejal

 

References

1.      Xu, L., Qi, X., Li, X., Bai, Y. and Liu, H. (2016). Recent advances in applications of nanomaterials for sample preparation. Talanta, 146: 714-726.

2.      Wu, W., Zhang, C. and Yang, S. (2017). Controllable synthesis of sandwich-like graphene-supported structures for energy storage and conversion. New Carbon Materials, 32(1): 1-14.     

3.      Azzouz, A., Kailasa, S. K., Lee, S. S., Rasc, A. J., Ballesteros, E., Zhang, M. and Kim, K. (2018). Review of nanomaterials as sorbents in solid-phase extraction for environmental samples, Trends in Analytical Chemistry, 108: 347-369.

4.      Simo, E. F. and Zougagh, M. (2013). Use of gold nanoparticle-coated sorbent materials for the selective preconcentration of sulfonylurea herbicides in water samples and determination by capillary liquid chromatography, Talanta, 105: 372-378.

5.      Anekthirakun, P. and Imyim, A. (2019). Separation of silver ions and silver nanoparticles by silica based-solid phase extraction prior to ICP-OES determination. Microchemical Journal, 145: 470-475.

6.      Zhao, B., He, M., Chen, B., and Bin, H. (2018). Ligand-assisted magnetic solid phase extraction for fast speciation of silver nanoparticles and silver ions in environmental water. Talanta, 183: 268-275.

7.      Mwilu, S. K., Siska, E., Baig, R. B. N., Varma, R. S., Heithmar, E. and Rogers, K. R. (2014). Separation and measurement of silver nanoparticles and silver ions using magnetic particles. Science of the Total Environment, 472: 316-323.

8.      Liu, F. K. (2009). Analysis and applications of nanoparticles in the separation sciences: A case of gold nanoparticles. Journal of Chromatography A, 1216: 9034-9047.

9.      Lin, J. H. and Tseng, W. L. (2012). Gold nanoparticles for specific extraction and enrichment of biomolecules and environmental pollutants. Reviews in Analytical Chemistry, 31: 153-162.

10.   Dastafkan, K., Khajeh, M., Ghaffari-Moghaddam, M. and Bohlooli, M. (2015). Silver nanoparticles for separation and preconcentration processes. TrAC-Trends in Analytical Chemistry, 64: 118-126.

11.   Oliveira, E., Núnez, C., Santos, H. M., Fernández-lodeiro, J., Fernández-lodeiro, A., Capelo, J. L. and Lodeiro, C. (2015). Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions. Sensors & Actuators: B. Chemical, 212: 297-328.

12.   Ten-Doménech, I., Martínez-Pérez-Cejuela, H., Lerma-García, M. J., Simó-Alfonso, E. F. and Herrero-Martínez, J. M. (2017). Molecularly imprinted polymers for selective solid-phase extraction of phospholipids from human milk samples. Microchimica Acta, 184(9): 3389-3397.

13.   Erger, C., and Schmidt, T. C. (2014). Disk-based solid-phase extraction analysis of organic substances in water. Trends in Analytical Chemistry, 61: 74-82.

14.   Dimpe, K. M., and Nomngongo, P. N. (2016). Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. Trends in Analytical Chemistry, 82: 199-207.

15.   Belardi, R. and Pawliszyn, J. (1989). The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Quality Research Journal, 24(1): 179-191.

16.   Zare, F., Ghaedi, M., and Daneshfar, A. (2015). The headspace solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples using silica fiber modified by self-assembled gold nanoparticles. Analytical Methods, 7(19): 8086-8093.

17.   Arthur, C. L., and Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 62(19): 2145-2148.

18.   Sadowska-Rociek, A., Surma, M. and Cieślik, E. (2014). Determination of polycyclic aromatic hydrocarbons in coffee and coffee substitutes using dispersive SPE and gas chromatography-mass spectrometry. Food Analytical Methods, 8(1): 109-121.

19.   Pincemaille, J., Schummer, C., Heinen, E. and Moris, G. (2014). Determination of polycyclic aromatic hydrocarbons in smoked and non-smoked black teas and tea infusions. Food Chemistry, 145: 807-813.

20.   Serrano, M., Bartolome, M., Gallego-Pico, A., Garcinuno, R. M., Bravo, J. C. and Fernandez, P. (2015). Synthesis of a molecularly imprinted polymer for the isolation of 1-hydroxypyrene in human urine. Talanta, 143: 71-76.

21.   Li, L. and Leopold, K. (2012). Ligand-assisted extraction for separation and preconcentration of gold nanoparticles from waters. Analytical Chemistry, 84: 4340-4349.

22.   BorFuh, C., Yang, Y. C., Tsai, H. Y. and Ho, L. S. (2003). Solid-phase microextraction coupled with gas chromatography and gas chromatography-mass spectrometry for public health pesticides analysis. Chromatographia, 57(7): 525-528.

23.   Eisert, R., and Pawliszyn, J. (1997). Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Analytical Chemistry, 69(16): 3140-3147.

24.   Wu, J., Tragas, C., Lord, H. and Pawliszyn, J. (2002). Analysis of polar pesticides in water and wine samples by automated in-tube solid-phase microextraction coupled with high-performance liquid chromatography-mass spectrometry. Journal of Chromatography A, 976 (1-2): 357-367.

25.   Fang, H., Liu, M. and Zeng, Z. (2006). Solid-phase microextraction coupled with capillary electrophoresis to determine ephedrine derivatives in water and urine using a sol-gel derived butyl methacrylate/silicone fiber. Talanta, 68(3): 979-986.

26.   Lashgari, M. and Yamini, Y. (2019). An overview of the most common lab-made coating materials in solid phase microextraction. Talanta, 191: 283-306.

27.   Guo, M., Gong, Z., Allinson, G., Tai, P., Miao, R., Li, X. and Zhuang, J. (2016). Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation. Chemosphere, 144: 1513-1520.

28.   Wang, H., Zhang, Y., Zhang, M., Zhen, Q., Wang, X. and Du, X. (2016). Gold nanoparticle modified NiTi composite nanosheet coating for efficient and selective solid phase microextraction of polycyclic aromatic hydrocarbons. Analytical Methods, 8(31): 6064-6073.

29.   Daniel M. C. and Astruc, D. (2004). Gold nanoparticles:  Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Review, 104: 293-346.

30.   Sykora, D., Kasicka, V., Miksik, I., Rezanka, P., Zaruba, K., Matejka, P. and Kral, V. (2010). Application of gold nanoparticles in separation sciences Journal of Separation Science, 33(3): 372-87.

31.   Boisselier, E. and Astruc, D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews, 38(6): 1759-1782.

32.   Khan, M. S., Vishakante, G. D., and Siddaramaiah, H. (2013). Gold nanoparticles: A paradigm shift in biomedical applications. Advances in Colloid and Interface Science, 199-200: 44-58.

33.   Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J., Wilson, O. and Mulvaney, P. (2002). Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters, 88(7): 077402.

34.   Chen, H., Roco, M., Li, X. and Lin, Y. (2008). Trends in nanotechnology patents. Nature Nanotechnology, 3(3): 123-125.

35.   Mandal, T., Fleming, M. and Walt, D. (2002). Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Letters, 2(1), 3-7.

36.   Lévy, R., Thanh, N. T. , Doty, R. C., Hussain, I., Nichols, R. J., Schiffrin, D. J., Brust, M., and Fernig, D. G. (2004). Rational and combinatorial design of peptide capping ligands for gold nanoparticles. Journal of American Chemical Society, 126(32): 10076-10084.

37.   Schofield, C. L., Haines, A. H., Field, R. A. and Russell, D. A. (2006). Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir, 22(15): 6707-6711.

38.   Skidmore, M. A., Patey, S. J., Thanh, N. T. K., Fernig, D. G., Turnbull, J. E. and Yates, E. A. (2004). Attachment of glycosaminoglycan oligosaccharides to thiol-derivatised gold surfaces. Chemical Communications, (23): 2700-2701.

39.   Mukherjee, P., Patra, C. R., Ghosh, A., Kumar, R. and Sastry, M. (2002). Characterization and catalytic activity of gold nanoparticles synthesized by autoreduction of aqueous chloroaurate ions with fumed silica. Chemistry of Materials, 14(4): 1678-1684.

40.   Chernousova, S. and Epple, M. (2013). Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Edition, 52: 1636-1653.

41.   Zhang, X. F., Liu, Z. G., Shen, W. and Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9): 1534-1568.

42.   Khajeh, M. and Sanchooli, E. (2011). Synthesis and evaluation of silver nanoparticles material for solid phase extraction of cobalt from water samples. Applied Nanoscience, 1: 205-209.

43.   Gong, J., Miao, X., Zhou, T. and Zhang, L. (2011). An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta, 85: 1344-1349.

44.   Toloza, C. A. T., Almeida, J. M. S., Khan, S., Yasmin, G., Andrea, R., Romani, E. C. and Aucélio, R. Q. (2018). Gold nanoparticles coupled with graphene quantum dots in organized medium to quantify aminoglycoside anti-biotics in yellow fever vaccine after solid phase extraction using a selective imprinted polymer. Journal Pharmaceutical and Biomedical Analysis, 158: 480-493.

45.   Devasurendra, A. M., Palagama, D. S. W., Rohanifar, A., Isailovic, D., Kirchhoff, J. R. and Anderson, J. L. (2018). Solid-phase extraction, quantification, and selective determination of microcystins in water with a gold-polypyrrole nanocomposite sorbent material. Journal of Chromatography A, 1560: 1-9.

46.   Panichev, N., Kalumba, M. M. and Mandiwana, K. L. (2014). Solid phase extraction of trace amount of mercury from natural waters on silver and gold nanoparticles. Analytica Chimica Acta, 813: 56-62. 

47.   Huang, K., Dai, R., Deng, W., Guo, S., Deng, H. and Wei, Y. (2018). Gold nanoclusters immobilized paper for visual detection of zinc in whole blood and cells by coupling hydride generation with headspace solid phase extraction. Sensors And Actuators B: Chemical, 255: 1631-1639.

48.   Jiang, K., Huang, Q., Fan, K., Wu, L., Nie, D. and Guo, W. (2018). Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Food Chemistry, 264: 218-225.

49.   Hsu, K., Lee, C., Tseng, W., Chao, Y. and Huang, Y. (2014). Selective and eco-friendly method for determination of mercury(II) ions in aqueous samples using an on-line AuNPs-PDMS composite microfluidic device/ICP-MS system, Talanta. 128: 408-413.

50.   Li, Y., Hsieh, C., Lai, C., Chang, Y., Chan, H., Tsai, C., and Wu, L. (2017). Biosensors and Bioelectronics Tyramine detection using PEDOT: PSS/AuNPs/1-methyl-4- mercaptopyridine modified screen-printed carbon electrode with molecularly imprinted polymer solid phase extraction. Biosensors and Bioelectronic, 87: 142-149.

51.   Hassan, M. M., Li, H., Ahmad, W.,  Zareef, M., Wang, J., Xie, S., Wang, P., Ouyang, Q.,  Wang, S. and Chen, Q. (2019). Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. LWT Food Science and Technology, 105: 290-297.

52.   Chen, C., Liang, X., Wang, J., Shaolei, Y., Yan, Z., Cai, Q. and Yao, S. (2013). Development of a highly robust solid phase microextraction fiber based on cross-linked methyl methacrylate-polyhedral oligomeric silsesquioxane hybrid polymeric coating. Analytica Chimica Acta, 792: 45-51.

53.   Yang, L., Zhang, J., Zhao, F., and Zeng, B. (2016). Electrodeposition of self-assembled poly(3,4-ethylenedioxythiophene) @gold nanoparticles on stainless steel wires for the headspace solid-phase microextraction and gas chromatographic determination of several polycyclic aromatic hydrocarbons. Journal of Chromatography A, 1471: 80-86.

54.   Yang, Y., Li, Y., Liu, H., Wang, X., & Du, X. (2014). Electrodeposition of gold nanoparticles onto an etched stainless steel wire followed by a self-assembled monolayer of octanedithiol as a fiber coating for selective solid-phase microextraction. Journal of Chromatography A, 1372: 25-33.       

55.   Xiao, C., Han, S., Wang, Z., Xing, J., Wu, C.  (2001) Application of the polysilicone fullerene coating for solid-phase microextraction in the determination of semi-volatile compounds. Journal of Chromatography A, 927: 121-130.

56.   Chen, J. M., Zou, J., B., J., Zeng, X. H., Song, J. J., Ji, Y. R., Wang, Chen, J. and Ha X., (2010) Preparation and evaluation of graphene-coated solid-phase microextraction fiber. Analytica Chimica Acta, 678: 44-49.

57.   Zhang, Y., Yang, Y., Li, Y., Zhang, M., Wang, X. and Du, X. (2015). Growth of cedar-like Au nanoparticles coating on an etched stainless steel wire and its application for selective solid-phase microextraction. Analytica Chimica Acta, 876: 55-62.

58.   Bian, W., Liu, Z., Lian, G., Wang, L., Wang, Q. and Zhan, J. (2017). High reliable and robust ultrathin-layer gold coating porous silver substrate via galvanic-free deposition for solid phase microextraction coupled with surface enhanced Raman spectroscopy. Analytica Chimica Acta, 994: 56-64.          

59.   Liu, H., Liu, L., Li, Y., Wang, X. and Du, X. (2014). Preparation of a robust and sensitive gold-coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental waters. Analytical Letters, 47(10): 1759-1771.

60.   Liu, H.-X., Yang, Y.-X., Ma, M. G., Wang, X.-M. and Du, X.-Z. (2015). Self-assembled gold nanoparticles coating for solid-phase microextraction of ultraviolet filters in environmental water. Chinese Journal Analytical Chemistry, 43(2): 207-211.

61.   Gutierrez-Serpa, A., Rocio-Bautista, P., Pino, V., Jimenez-Moreno, F. and Jimenez-Abizanda, A. I. (2017). Gold nanoparticles based solid-phase microextraction coatings for determining organochlorine pesticides in aqueous environmental samples. Journal of Separation Science, 40(9): 2009-2021.

62.   Tran, Q. H., Nguyen, V. Q. and Le, A. T. (2013). Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Nanoscience and Nanotechnology, 4: 033001.

63.   Djerahov, L., Vasileva, P., Karadjova, I., Kurakalva, R. M. and Aradhi, K. K. (2016). Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). Carbohydrate Polymer, 147: 45-52.

64.   Bagheri, H. and Banihashemi, S. (2015). Sol-gel-based silver nanoparticles-doped silica-polydiphenylamine nanocomposite for micro-solid-phase extraction. Analytica Chimica Acta, 886: 56-65.

65.   Gao, Y., Xia, B., Liu, J., Ji, B., Ma, F., Ding, L., Li, B. and Zhou, Y. (2015). Development and characterization of a nanodendritic silver-based solid-phase extraction sorbent for selective enrichment of endocrine disrupting chemicals in water and milk samples. Analytica Chimica Acta, 900: 76-82.

66.   Baysal, A., Kahraman, M. and Akman, S. (2009). The solid phase extraction of lead using silver nanoparticles – attached to silica gel prior to its determination by FAAS. Current Analytical Chemistry, 5: 352-357.

67.   Gopidas, K. R., Whitesell, J. K. and Fox, M. A. (2003). Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer. Nano Letters, 3(12): 1757-1760.

68.   Yang, Y., Guo, M., Zhang, Y., Song, W., Li, Y., Wang, X. and Du, X. (2015). Self-assembly of alkyldithiols on a novel dendritic silver nanostructure electrodeposited on a stainless steel wire as a fiber coating for solid-phase microextraction. RSC Advances, 5(88): 71859-71867.

69.   Liu, C., Zhang, X., Li, L., Cui, J., Shi, Y. E., Wang, L. and Zhan, J. (2015). Silver nanoparticle aggregates on metal fibers for solid phase microextraction–surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons. Analyst, 140(13): 4668-4675.

70.   White, R. J., Luque, R., Budarin, V. L., Clark, J. H. and Macquarrie, D. J. (2009). Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews, 38(2): 481-494.

71.   Gutiérrez-Serpa, A., Napolitano-Tabares, P. I., Pino, V., Jiménez-Moreno, F., and Jiménez-Abizanda, A. I. (2018). Silver nanoparticles supported onto a stainless steel wire for direct-immersion solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by GC-FID. Microchimica Acta, 185(7): 341.

72.   Jiang, N., Wang, J., Li, W., Xiao, J., Li, J., Lin, X., Xie, Z., You, L. and Zhang, Q. (2019). Silver nanoparticles-coated monolithic column for in-tube solid-phase microextraction of monounsaturated fatty acid methyl esters. Journal of Chromatography A, 1585: 19-26.

73.   Yazdi, M. N., Yamini, Y. and Asiabi, H. (2018). Fabrication of polypyrrole-silver nanocomposite for hollow fiber solid phase microextraction followed by HPLC/UV analysis for determination of parabens in water and beverages samples. Journal of Food Composition Analysis, 74: 18-26.

74.   Feng, J., Sun, M., Li, J., Liu, X. and Jiang, S. (2011). A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique. Analytica Chimica Acta, 701(2): 174-180.      

75.   Hasanli, F., Mohammadiazar, S., Bahmaei, M. and Sharif, A. A. M. (2018). Coating of sol–gel film on silver nanodendrite as a novel solid-phase microextraction fiber for determination of volatile aldehydes in edible oils. Food Analytical Methods, 11: 2149-2157.

76.   Wang, L., Hou, X., Li, J., Liu, S. and Guo, Y. (2015). Graphene oxide decorated with silver nanoparticles as a coating on a stainless steel fiber for solid phase microextraction.  Journal of Separation Science, 38(14): 2439-2446.

77.   Liu, Z., Wang, L., Bian, W., Zhang, M. and Zhan, J. (2017). Porous silver coating fiber for rapidly screening organotin compounds by solid phase microextraction coupled with surface enhanced Raman spectroscopy. RSC Advances, 7(6): 3117-3124.

78.   Qiu, L., Liu, Q., Zeng, X., Liu, Q., Hou, X., Tian, Y., and Wu, L. (2018). Sensitive detection of bisphenol A by coupling solid phase microextraction based on monolayer graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman spectroscopy. Talanta, 187: 13-18.

79.   Forough, M., Farhadi, K., Molaei, R., Khalili, H., Shakeri, R., Zamani, A., and Matin, A. A. (2017). Capillary electrophoresis with online stacking in combination with AgNPs@ MCM-41 reinforced hollow fiber solid-liquid phase microextraction for quantitative analysis of Capecitabine and its main metabolite 5-Fluorouracil in plasma samples isolated from cancer patients. Journal of Chromatography B, 1040: 22-37.