Malaysian
Journal of Analytical Sciences Vol 24 No 4
(2020): 464 - 483
A REVIEW ON APPLICATIONS OF GOLD AND SILVER-BASED
SORBENTS IN SOLID PHASE EXTRACTION AND SOLID PHASE MICROEXTRACTION
(Satu Ulasan Penggunaan Pengerap Berasaskan Aurum dan
Argentum dalam Pengekstrakan Fasa Pepejal dan Pengekstrakan Mikro Fasa
Pepejal)
Wan Aini Wan Ibrahim1, 2*, Zetty
Azalea Sutirman1, Jawed Qaderi1,3, Kasimu Abu
Bakar1,4, Siti Hajar Md Basir1, Imad Eddine Aouissi1
1Department of Chemistry,
Faculty of Science
2Centre for Sustainable
Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research
Universiti Teknologi Malaysia, 81310 UTM Johor
Bahru, Johor, Malaysia
3Department of Physical
Chemistry, Faculty of Chemistry,
Kabul
University, Jamal Mina 1001 Kabul, Afghanistan
4Department of Chemistry,
Faculty of Science,
Sokoto
State University, Sokoto, Nigeria
*Corresponding
author: waini@utm.my, wanaini@kimia.fs.utm.my
Received:
5 April 2020; Accepted: 7 June 2020;
Published: 11 August 2020
Abstract
Organic and inorganic
pollutants and contaminants are considered harmful to ecosystem, even at low or
trace-level concentrations. Several studies have been performed to degrade or
remove these contaminants from environmental matrices and the use of
pre-concentration approaches such as solid phase extraction (SPE) and solid
phase microextraction (SPME) for their quantitation has been developed and showed
great demand as an essential module to upgrade both practical efficiency and
analytical sensitivity. Gold nanoparticles (Au NPs) and silver
nanoparticles (Ag NPs) could be used as a sorbents prior to the combined high
efficient separation or extraction methods with different detection techniques.
Along with the rapid development of nanotechnology in material science,
numerous nanomaterials include Au NPs and Ag NPs have been developed with
particularly useful applications in analytical chemistry. Au NPs and Ag NPs are
attracting a great deal of attention for their use in various technologies,
including catalysis, optical and electronic devices, and separation science. In
this review, recent progress of Ag NPs applied in SPE and SPME have been summarized
and discussed. Au NPs and Ag NPs materials are evaluated for their unusual
performance in various applications from environmental trace sample analysis to
clinical investigations. Such great variety of uses makes nanomaterials kind of
versatile tools in sample preparation for almost all categories of analytes.
Keywords:
silver nanoparticles, gold nanoparticles, pre-concentration, solid phase
extraction, solid phase microextraction
Abstrak
Bahan pencemar organik
dan tak organik dianggap berbahaya kepada ekosistem, walaupun, pada kepekatan tahap rendah atau surih.
Beberapa kajian telah dilakukan untuk nyahdegradasi atau penyingkiran bahan
pencemar ini dari matriks sekitaran dan penggunaan pendekatan pra-pemekatan
seperti pengekstrakan fasa pepejal (SPE) dan pengekstrakan mikro
fasa pepejal (SPME) untuk penentuan kuantitatif telah dibangunkan dan menunjukkan permintaan yang besar sebagai modul penting untuk meningkatkan kecekapan
praktik dan sensitiviti analisis. Zarah nano emas (Au NPs) dan perak (Ag NPs) boleh
digunakan sebagai pengerap sebelum gabungan pemisahan kecekapan tinggi atau
kaedah pengekstrakan dengan teknik pengesanan yang berbeza. Seiring dengan perkembangan nanoteknologi yang pesat
dalam sains bahan, banyak bahan nano termasuk Au NPs dan Ag NPs telah
dibangunkan terutama aplikasi berguna dalam kimia analisis. Au
NPs dan Au NPs menarik banyak perhatian untuk penggunaannya dalam pelbagai
teknologi termasuklah pemangkinan, alat optik dan elektronik, dan
sains pemisahan. Dalam ulasan ini, kemajuan terkini Au NPs dan Ag NPs dalam
SPE dan SPME dirumus dan dibincangkan. Bahan Au NPs dan Ag NPs dinilai untuk prestasi luar biasanya dalam pelbagai
aplikasi dari analisis sampel surih alam sekitar kepada penyiasatan klinikal. Kepelbagaian penggunaan bahan nano menjadikannya sebagai peranti serba boleh dalam
penyediaan sampel untuk hampir semua kategori analit.
.
Kata
kunci: zarah-nano aurum, zarah-nano argentum, pra-pemekatan,
pengekstrakan fasa pepejal, pengekstrakan mikro fasa pepejal
References
1. Xu, L., Qi, X., Li, X., Bai, Y. and Liu,
H. (2016). Recent advances in applications of nanomaterials for sample
preparation. Talanta, 146:
714-726.
2.
Wu, W., Zhang, C. and Yang,
S. (2017). Controllable synthesis of sandwich-like graphene-supported
structures for energy storage and conversion. New Carbon Materials, 32(1): 1-14.
3.
Azzouz, A., Kailasa, S.
K., Lee, S. S., Rasc, A. J., Ballesteros, E., Zhang, M. and Kim, K. (2018).
Review of nanomaterials as sorbents in solid-phase extraction for environmental
samples, Trends in Analytical Chemistry, 108:
347-369.
4.
Simo, E. F. and Zougagh,
M. (2013). Use of gold nanoparticle-coated sorbent materials for the selective
preconcentration of sulfonylurea herbicides in water samples and determination
by capillary liquid chromatography, Talanta,
105: 372-378.
5.
Anekthirakun, P. and
Imyim, A. (2019). Separation of silver ions and silver nanoparticles by silica
based-solid phase extraction prior to ICP-OES determination. Microchemical Journal, 145: 470-475.
6.
Zhao, B., He, M., Chen,
B., and Bin, H. (2018). Ligand-assisted magnetic solid phase extraction for
fast speciation of silver nanoparticles and silver ions in environmental water.
Talanta, 183: 268-275.
7.
Mwilu, S. K., Siska, E.,
Baig, R. B. N., Varma, R. S., Heithmar, E. and Rogers, K. R. (2014). Separation
and measurement of silver nanoparticles and silver ions using magnetic
particles. Science of the Total
Environment, 472: 316-323.
8.
Liu, F.
K. (2009). Analysis and applications of nanoparticles in the separation
sciences: A case of gold nanoparticles. Journal of Chromatography A, 1216:
9034-9047.
9.
Lin, J.
H. and Tseng, W. L. (2012). Gold nanoparticles for specific extraction and
enrichment of biomolecules and environmental pollutants. Reviews in
Analytical Chemistry, 31: 153-162.
10.
Dastafkan,
K., Khajeh, M., Ghaffari-Moghaddam, M. and Bohlooli, M. (2015). Silver
nanoparticles for separation and preconcentration processes. TrAC-Trends in
Analytical Chemistry, 64: 118-126.
11.
Oliveira,
E., Núnez, C., Santos, H. M., Fernández-lodeiro, J., Fernández-lodeiro, A.,
Capelo, J. L. and Lodeiro, C. (2015). Revisiting the use of gold and silver
functionalised nanoparticles as colorimetric and fluorometric chemosensors for
metal ions. Sensors & Actuators: B. Chemical, 212: 297-328.
12.
Ten-Doménech, I.,
Martínez-Pérez-Cejuela, H., Lerma-García, M. J., Simó-Alfonso, E. F. and Herrero-Martínez,
J. M. (2017). Molecularly imprinted polymers for selective solid-phase
extraction of phospholipids from human milk samples. Microchimica Acta,
184(9): 3389-3397.
13.
Erger, C., and Schmidt,
T. C. (2014). Disk-based solid-phase extraction analysis of organic substances
in water. Trends in Analytical Chemistry,
61: 74-82.
14.
Dimpe, K. M., and Nomngongo,
P. N. (2016). Current sample preparation methodologies for analysis of emerging
pollutants in different environmental matrices. Trends in Analytical Chemistry, 82: 199-207.
15.
Belardi,
R. and Pawliszyn, J. (1989). The application of chemically modified fused
silica fibers in the extraction of organics from water matrix samples and their
rapid transfer to capillary columns. Water Quality Research Journal, 24(1): 179-191.
16.
Zare, F., Ghaedi, M., and
Daneshfar, A. (2015). The headspace solid-phase microextraction of polycyclic
aromatic hydrocarbons in environmental water samples using silica fiber
modified by self-assembled gold nanoparticles. Analytical Methods, 7(19): 8086-8093.
17.
Arthur, C. L., and Pawliszyn,
J. (1990). Solid phase microextraction with thermal desorption using fused
silica optical fibers. Analytical
Chemistry, 62(19): 2145-2148.
18.
Sadowska-Rociek, A.,
Surma, M. and Cieślik, E. (2014). Determination of polycyclic aromatic
hydrocarbons in coffee and coffee substitutes using dispersive SPE and gas
chromatography-mass spectrometry. Food
Analytical Methods, 8(1): 109-121.
19.
Pincemaille, J.,
Schummer, C., Heinen, E. and Moris, G. (2014). Determination of polycyclic
aromatic hydrocarbons in smoked and non-smoked black teas and tea infusions. Food Chemistry, 145: 807-813.
20.
Serrano, M., Bartolome,
M., Gallego-Pico, A., Garcinuno, R. M., Bravo, J. C. and Fernandez, P. (2015). Synthesis
of a molecularly imprinted polymer for the isolation of 1-hydroxypyrene in
human urine. Talanta, 143: 71-76.
21.
Li, L. and Leopold, K.
(2012). Ligand-assisted extraction for separation and preconcentration of gold
nanoparticles from waters. Analytical
Chemistry, 84: 4340-4349.
22.
BorFuh, C., Yang, Y. C.,
Tsai, H. Y. and Ho, L. S. (2003). Solid-phase microextraction coupled with gas
chromatography and gas chromatography-mass spectrometry for public health
pesticides analysis. Chromatographia,
57(7): 525-528.
23.
Eisert, R., and Pawliszyn,
J. (1997). Automated in-tube solid-phase microextraction coupled to
high-performance liquid chromatography. Analytical
Chemistry, 69(16): 3140-3147.
24.
Wu, J., Tragas, C., Lord,
H. and Pawliszyn, J. (2002). Analysis of polar pesticides in water and wine
samples by automated in-tube solid-phase microextraction coupled with
high-performance liquid chromatography-mass spectrometry. Journal of Chromatography A, 976 (1-2): 357-367.
25.
Fang, H., Liu, M. and Zeng,
Z. (2006). Solid-phase microextraction coupled with capillary electrophoresis
to determine ephedrine derivatives in water and urine using a sol-gel derived
butyl methacrylate/silicone fiber. Talanta, 68(3): 979-986.
26.
Lashgari, M. and Yamini,
Y. (2019). An overview of the most common lab-made coating materials in solid
phase microextraction. Talanta, 191: 283-306.
27.
Guo, M., Gong, Z.,
Allinson, G., Tai, P., Miao, R., Li, X. and Zhuang, J. (2016). Variations in
the bioavailability of polycyclic aromatic hydrocarbons in industrial and
agricultural soils after bioremediation. Chemosphere,
144: 1513-1520.
28.
Wang, H., Zhang, Y.,
Zhang, M., Zhen, Q., Wang, X. and Du, X. (2016). Gold nanoparticle modified
NiTi composite nanosheet coating for efficient and selective solid phase
microextraction of polycyclic aromatic hydrocarbons. Analytical Methods, 8(31): 6064-6073.
29.
Daniel M. C. and Astruc,
D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry,
quantum-size-related properties, and applications toward biology, catalysis,
and nanotechnology. Chemical Review,
104: 293-346.
30.
Sykora, D., Kasicka, V.,
Miksik, I., Rezanka, P., Zaruba, K., Matejka, P. and Kral, V. (2010).
Application of gold nanoparticles in separation sciences Journal of Separation Science, 33(3): 372-87.
31.
Boisselier, E. and Astruc,
D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging,
diagnostics, therapies and toxicity. Chemical
Society Reviews, 38(6): 1759-1782.
32.
Khan, M. S., Vishakante,
G. D., and Siddaramaiah, H. (2013). Gold nanoparticles: A paradigm shift in
biomedical applications. Advances in
Colloid and Interface Science, 199-200: 44-58.
33.
Sönnichsen, C., Franzl,
T., Wilk, T., von Plessen, G., Feldmann, J., Wilson, O. and Mulvaney, P.
(2002). Drastic reduction of plasmon damping in gold nanorods. Physical
Review Letters, 88(7): 077402.
34.
Chen, H., Roco, M., Li,
X. and Lin, Y. (2008). Trends in nanotechnology patents. Nature
Nanotechnology, 3(3): 123-125.
35.
Mandal, T., Fleming, M.
and Walt, D. (2002). Preparation of polymer coated gold nanoparticles by
surface-confined living radical polymerization at ambient temperature. Nano
Letters, 2(1), 3-7.
36.
Lévy, R., Thanh, N. T. ,
Doty, R. C., Hussain, I., Nichols, R. J., Schiffrin, D. J., Brust, M., and Fernig,
D. G. (2004). Rational and combinatorial design of peptide capping ligands for
gold nanoparticles. Journal of American
Chemical Society, 126(32): 10076-10084.
37.
Schofield, C. L., Haines,
A. H., Field, R. A. and Russell, D. A. (2006). Silver and gold
glyconanoparticles for colorimetric bioassays. Langmuir, 22(15): 6707-6711.
38.
Skidmore, M. A., Patey,
S. J., Thanh, N. T. K., Fernig, D. G., Turnbull, J. E. and Yates, E. A. (2004).
Attachment of glycosaminoglycan oligosaccharides to thiol-derivatised gold
surfaces. Chemical Communications, (23):
2700-2701.
39.
Mukherjee, P., Patra, C.
R., Ghosh, A., Kumar, R. and Sastry, M. (2002). Characterization and catalytic
activity of gold nanoparticles synthesized by autoreduction of aqueous
chloroaurate ions with fumed silica.
Chemistry of Materials, 14(4): 1678-1684.
40.
Chernousova, S. and Epple,
M. (2013). Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International
Edition, 52: 1636-1653.
41.
Zhang, X. F., Liu, Z. G., Shen, W. and Gurunathan, S.
(2016). Silver nanoparticles: Synthesis, characterization, properties,
applications, and therapeutic approaches. International Journal of Molecular
Sciences, 17(9): 1534-1568.
42.
Khajeh, M. and Sanchooli,
E. (2011). Synthesis and evaluation of silver nanoparticles material for solid
phase extraction of cobalt from water samples. Applied Nanoscience, 1: 205-209.
43.
Gong, J., Miao, X., Zhou,
T. and Zhang, L. (2011). An enzymeless organophosphate pesticide sensor using
Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta, 85: 1344-1349.
44.
Toloza, C. A. T.,
Almeida, J. M. S., Khan, S., Yasmin, G., Andrea, R., Romani, E. C. and Aucélio,
R. Q. (2018). Gold nanoparticles coupled with graphene quantum dots in
organized medium to quantify aminoglycoside anti-biotics in yellow fever
vaccine after solid phase extraction using a selective imprinted polymer. Journal Pharmaceutical and Biomedical Analysis,
158: 480-493.
45.
Devasurendra, A. M.,
Palagama, D. S. W., Rohanifar, A., Isailovic, D., Kirchhoff, J. R. and Anderson,
J. L. (2018). Solid-phase extraction, quantification, and selective
determination of microcystins in water with a gold-polypyrrole nanocomposite
sorbent material. Journal of Chromatography
A, 1560: 1-9.
46.
Panichev, N., Kalumba, M.
M. and Mandiwana, K. L. (2014). Solid phase extraction of trace amount of
mercury from natural waters on silver and gold nanoparticles. Analytica Chimica Acta, 813: 56-62.
47.
Huang,
K., Dai, R., Deng, W., Guo, S., Deng, H. and Wei, Y. (2018). Gold nanoclusters
immobilized paper for visual detection of zinc in whole blood and cells by
coupling hydride generation with headspace solid phase extraction. Sensors
And Actuators B: Chemical, 255:
1631-1639.
48.
Jiang, K., Huang, Q.,
Fan, K., Wu, L., Nie, D. and Guo, W. (2018). Reduced graphene oxide and gold
nanoparticle composite-based solid-phase extraction coupled with
ultra-high-performance liquid chromatography-tandem mass spectrometry for the
determination of 9 mycotoxins in milk. Food
Chemistry, 264: 218-225.
49.
Hsu, K., Lee, C.,
Tseng, W., Chao, Y. and Huang, Y. (2014). Selective and eco-friendly method for
determination of mercury(II) ions in aqueous samples using an on-line
AuNPs-PDMS composite microfluidic device/ICP-MS system, Talanta. 128: 408-413.
50.
Li, Y., Hsieh, C., Lai,
C., Chang, Y., Chan, H., Tsai, C., and Wu, L. (2017). Biosensors and
Bioelectronics Tyramine detection using PEDOT: PSS/AuNPs/1-methyl-4-
mercaptopyridine modified screen-printed carbon electrode with molecularly
imprinted polymer solid phase extraction. Biosensors
and Bioelectronic, 87: 142-149.
51.
Hassan, M. M., Li, H.,
Ahmad, W., Zareef, M., Wang, J., Xie,
S., Wang, P., Ouyang, Q., Wang, S. and Chen,
Q. (2019). Au@Ag nanostructure based SERS substrate for simultaneous
determination of pesticides residue in tea via solid phase extraction coupled
multivariate calibration. LWT Food Science and Technology,
105: 290-297.
52.
Chen, C., Liang, X.,
Wang, J., Shaolei, Y., Yan, Z., Cai, Q. and Yao, S. (2013). Development of a
highly robust solid phase microextraction fiber based on cross-linked methyl
methacrylate-polyhedral oligomeric silsesquioxane hybrid polymeric coating. Analytica Chimica Acta, 792: 45-51.
53.
Yang, L., Zhang, J.,
Zhao, F., and Zeng, B. (2016). Electrodeposition of self-assembled
poly(3,4-ethylenedioxythiophene) @gold nanoparticles on stainless steel wires
for the headspace solid-phase microextraction and gas chromatographic
determination of several polycyclic aromatic hydrocarbons. Journal of Chromatography A, 1471: 80-86.
54.
Yang, Y., Li, Y., Liu,
H., Wang, X., & Du, X. (2014). Electrodeposition of gold nanoparticles onto
an etched stainless steel wire followed by a self-assembled monolayer of
octanedithiol as a fiber coating for selective solid-phase microextraction. Journal of Chromatography A, 1372: 25-33.
55.
Xiao, C., Han, S., Wang,
Z., Xing, J., Wu, C. (2001) Application
of the polysilicone fullerene coating for solid-phase microextraction in the
determination of semi-volatile compounds. Journal
of Chromatography A, 927: 121-130.
56.
Chen, J. M., Zou, J., B.,
J., Zeng, X. H., Song, J. J., Ji, Y. R., Wang, Chen, J. and Ha X., (2010)
Preparation and evaluation of graphene-coated solid-phase microextraction
fiber. Analytica Chimica Acta, 678: 44-49.
57.
Zhang, Y., Yang, Y., Li,
Y., Zhang, M., Wang, X. and Du, X. (2015). Growth of cedar-like Au
nanoparticles coating on an etched stainless steel wire and its application for
selective solid-phase microextraction. Analytica
Chimica Acta, 876: 55-62.
58.
Bian, W., Liu, Z., Lian,
G., Wang, L., Wang, Q. and Zhan, J. (2017). High reliable and robust
ultrathin-layer gold coating porous silver substrate via galvanic-free
deposition for solid phase microextraction coupled with surface enhanced Raman
spectroscopy. Analytica Chimica Acta,
994: 56-64.
59.
Liu, H., Liu, L., Li, Y.,
Wang, X. and Du, X. (2014). Preparation of a robust and sensitive gold-coated
fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in
environmental waters. Analytical Letters,
47(10): 1759-1771.
60.
Liu, H.-X., Yang, Y.-X.,
Ma, M. G., Wang, X.-M. and Du, X.-Z. (2015). Self-assembled gold nanoparticles
coating for solid-phase microextraction of ultraviolet filters in environmental
water. Chinese Journal Analytical Chemistry,
43(2): 207-211.
61.
Gutierrez-Serpa, A.,
Rocio-Bautista, P., Pino, V., Jimenez-Moreno, F. and Jimenez-Abizanda, A. I.
(2017). Gold nanoparticles based solid-phase microextraction coatings for
determining organochlorine pesticides in aqueous environmental samples. Journal of Separation Science, 40(9): 2009-2021.
62.
Tran, Q. H., Nguyen, V.
Q. and Le, A. T. (2013). Silver nanoparticles: synthesis, properties,
toxicology, applications and perspectives. Nanoscience
and Nanotechnology, 4: 033001.
63.
Djerahov, L., Vasileva,
P., Karadjova, I., Kurakalva, R. M. and Aradhi, K. K. (2016). Chitosan film
loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III),
Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). Carbohydrate Polymer, 147: 45-52.
64.
Bagheri, H. and Banihashemi,
S. (2015). Sol-gel-based silver nanoparticles-doped silica-polydiphenylamine
nanocomposite for micro-solid-phase extraction. Analytica Chimica Acta, 886: 56-65.
65.
Gao, Y., Xia, B., Liu,
J., Ji, B., Ma, F., Ding, L., Li, B. and Zhou, Y. (2015). Development and
characterization of a nanodendritic silver-based solid-phase extraction sorbent
for selective enrichment of endocrine disrupting chemicals in water and milk
samples. Analytica Chimica Acta, 900:
76-82.
66.
Baysal, A., Kahraman, M.
and Akman, S. (2009). The solid phase extraction of lead using silver
nanoparticles – attached to silica gel prior to its determination by FAAS. Current Analytical Chemistry, 5: 352-357.
67.
Gopidas, K. R.,
Whitesell, J. K. and Fox, M. A. (2003). Synthesis, characterization, and
catalytic applications of a palladium-nanoparticle-cored dendrimer. Nano Letters, 3(12): 1757-1760.
68.
Yang, Y., Guo, M., Zhang,
Y., Song, W., Li, Y., Wang, X. and Du, X. (2015). Self-assembly of
alkyldithiols on a novel dendritic silver nanostructure electrodeposited on a
stainless steel wire as a fiber coating for solid-phase microextraction. RSC Advances, 5(88): 71859-71867.
69.
Liu, C., Zhang, X., Li,
L., Cui, J., Shi, Y. E., Wang, L. and Zhan, J. (2015). Silver nanoparticle
aggregates on metal fibers for solid phase microextraction–surface enhanced
Raman spectroscopy detection of polycyclic aromatic hydrocarbons. Analyst, 140(13): 4668-4675.
70.
White, R. J., Luque, R.,
Budarin, V. L., Clark, J. H. and Macquarrie, D. J. (2009). Supported metal
nanoparticles on porous materials. Methods and applications. Chemical Society Reviews, 38(2): 481-494.
71.
Gutiérrez-Serpa, A.,
Napolitano-Tabares, P. I., Pino, V., Jiménez-Moreno, F., and Jiménez-Abizanda,
A. I. (2018). Silver nanoparticles supported onto a stainless steel wire for
direct-immersion solid-phase microextraction of polycyclic aromatic
hydrocarbons prior to their determination by GC-FID. Microchimica Acta, 185(7): 341.
72.
Jiang, N., Wang, J., Li,
W., Xiao, J., Li, J., Lin, X., Xie, Z., You, L. and Zhang, Q. (2019). Silver
nanoparticles-coated monolithic column for in-tube solid-phase microextraction
of monounsaturated fatty acid methyl esters. Journal of Chromatography A, 1585: 19-26.
73.
Yazdi, M. N., Yamini, Y. and
Asiabi, H. (2018). Fabrication of polypyrrole-silver nanocomposite for hollow
fiber solid phase microextraction followed by HPLC/UV analysis for
determination of parabens in water and beverages samples. Journal of Food Composition Analysis, 74: 18-26.
74.
Feng, J., Sun, M., Li,
J., Liu, X. and Jiang, S. (2011). A novel silver-coated solid-phase
microextraction metal fiber based on electroless plating technique. Analytica Chimica Acta, 701(2): 174-180.
75.
Hasanli, F.,
Mohammadiazar, S., Bahmaei, M. and Sharif, A. A. M. (2018). Coating of sol–gel
film on silver nanodendrite as a novel solid-phase microextraction fiber for
determination of volatile aldehydes in edible oils. Food Analytical Methods, 11: 2149-2157.
76.
Wang, L., Hou, X., Li,
J., Liu, S. and Guo, Y. (2015). Graphene oxide decorated with silver
nanoparticles as a coating on a stainless steel fiber for solid phase
microextraction. Journal of Separation Science, 38(14): 2439-2446.
77.
Liu, Z., Wang, L., Bian,
W., Zhang, M. and Zhan, J. (2017). Porous silver coating fiber for rapidly
screening organotin compounds by solid phase microextraction coupled with
surface enhanced Raman spectroscopy. RSC
Advances, 7(6): 3117-3124.
78.
Qiu, L., Liu, Q., Zeng,
X., Liu, Q., Hou, X., Tian, Y., and Wu, L. (2018). Sensitive detection of
bisphenol A by coupling solid phase microextraction based on monolayer
graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman
spectroscopy. Talanta, 187: 13-18.
79.
Forough, M., Farhadi, K.,
Molaei, R., Khalili, H., Shakeri, R., Zamani, A., and Matin, A. A. (2017).
Capillary electrophoresis with online stacking in combination with AgNPs@
MCM-41 reinforced hollow fiber solid-liquid phase microextraction for
quantitative analysis of Capecitabine and its main metabolite 5-Fluorouracil in
plasma samples isolated from cancer patients. Journal of Chromatography B, 1040: 22-37.