Malaysian
Journal of Analytical Sciences Vol 24 No 4
(2020): 599 - 614
A FEASIBILITY STUDY ON VOLATILE ORGANIC COMPOUNDS PROFILING OF OIL PALM-Ganoderma INFECTED WOOD FOR BASAL STEM
ROT DETECTION
(Kajian Kebolehlaksanaan Pemprofilan Sebatian
Organik Meruap daripada Kayu Sawit yang Dijangkiti Ganoderma bagi
Mengesan Penyakit Reput Pangkal Batang)
Zainol Hilmi Nur Hailini*, Idris Abu Seman, Mohd
Azmil Mohd Noor, Shariffah-Muzaimah Syed Aripin
Malaysian Palm Oil Board,
6, Persiaran Institusi, Bandar Baru Bangi, 43000
Kajang, Selangor, Malaysia
*Corresponding author: hailini@mpob.gov.my
Received: 11 March 2020; Accepted: 28 May 2020; Published: 11 August 2020
Abstract
Volatile organic
compounds (VOCs) are commonly released during plant-pathogen interactions due
to pathogenicity or plant defence responses. Basal stem rot (BSR) disease
caused by Ganoderma boninense fungus
remains a serious threat to oil palm cultivation. This study aimed to
investigate the feasibility of detecting VOCs released from oil palm wood
tissue infected by G. boninense using
headspace solid-phase microextraction (HS-SPME) method combined with
gas-chromatography mass-spectrometry (GC-MS). Several factors affecting the
HS-SPME extraction efficacy were investigated; 0.25 g of sample homogenised in
liquid nitrogen was shown to be the most useful preparation procedure, while fibre
divinylbenzene/carboxen/polydimethylsiloxane (DVB/Car/PDMS) was shown as the
optimum extraction phase. The optimised method was capable of sampling VOCs
with high reproducibility with a balanced VOCs profile of various chemical
classes. The most abundant VOCs detected were the aliphatic compounds with
eight-carbon atoms, 1-octen-3-ol (69.43%) and 3-octanone (10.34%). This
preliminarily study reveals that the detected VOCs could also be used as
biomarker candidates for basal stem rot disease detection. However, further
study is required.
Keywords: basal
stem rot, Ganoderma, oil palm,
1-octen-3-ol, 3-octanone
Abstrak
Sebatian-sebatian
organik meruap (VOCs) biasanya dibebaskan semasa interaksi tumbuhan-patogen
kesan kepatogenan atau tindak balas pertahanan tumbuhan. Penyakit reput pangkal
batang (BSR) yang disebabkan oleh kulat Ganoderma
boninense masih lagi menjadi ancaman serius terhadap penanaman sawit.
Kajian ini dijalankan bertujuan menyelidik kebolehlaksanaan pengesanan VOC yang
terbebas dari tisu kayu kelapa sawit yang dijangkiti oleh G. boninense menggunakan kaedah mikroekstraksi fasa pepejal-ruang
tutupan (HS-SPME) yang digabung bersama kromatografi gas-spektrometri jisim
(GC-MS). Beberapa faktor yang mempengaruhi keberkesanan pengambilan HS-SPME telah
dikaji; 0.25 g sampel yang dihomogenkan dalam nitrogen cair terbukti sebagai
prosedur penyediaan yang paling sesuai, sementara gentian
divinilbenzena/karboksena/polidimetilsikloheksana (DVB/Car/PDMS) dibuktikan
sebagai fasa pengekstrakan yang optimum. Kaedah yang optimum ini mampu
mengekstrak VOCs dengan kebolehulangan yang tinggi dengan profil VOCs yang
seimbang dari pelbagai kelas kimia. VOCs yang paling banyak dikesan adalah
sebatian-sebatian alifatik dengan atom-atom lapan-karbon, 1-okten-3-ol (69.43%)
dan 3-oktanon (10.34%). Kajian awal ini mendedahkan bahawa VOCs yang dikesan
juga berpotensi digunakan sebagai penanda biologi bagi pengesanan penyakit
reput pangkal batang. Walau bagaimanapun, kajian lanjutan adalah diperlukan.
Kata
kunci: reput pangkal batang, Ganoderma,
sawit, 1-okten-3-ol, 3-oktanon
1.
Khusairi, A., Ong-Abdullah,
M., Nambiappan, B., Hishamuddin, E., Mohd Noor Izzuddin, Z. B., Razmah, G.,
Subramaniam, V., Sundram, S. and Ahmad Parveez, G. K. (2019). Oil palm economic
performance in Malaysia and R&D progress in 2018. Journal of Oil Palm Research, 31(2): 165-194.
2.
Rees, R. W., Flood, J.,
Hasan, Y., Potter, U. and Cooper, R. M. (2009). Basal stem rot of oil palm (Elaeis guineensis); Mode of root
infection and lower stem invasion by Ganoderma
boninense. Plant Pathology, 58: 982-989.
3. Idris, A. S., NurRashyeda, R., Rusli, M. H.,
Sundram, S. and Norman, K. (2016). Standard operating procedures (SOP) guidelines
for managing Ganoderma disease in oil palm. Malaysian Palm Oil Board, Malaysia:
pp. 1-5.
4.
Ariffin, D., Idris, A. S.
and Singh, G. (2000). Status of Ganoderma
in oil palm, in: Ganoderma diseases of perennial crops (eds)
Flood, J., Bridge, P. D. and Holderness, M. CABI Publishing, London: pp. 49- 68.
5.
Spinelli,
F., Costa, G., Rondelli, E., Busi, S., Vanneste, J. L., Rodriguez, E. M. T.,
Savioli, S. and Cristescu, S. M. (2011). Volatile compounds produced by Erwinia amylovora and their potential
exploitation for bacterial identification. Acta
Horticulturae, 896: 77-84.
6. Blasioli, S., Biondi, E., Braschi, I., Mazzucchi, U.,
Bazzi, C. and Gessa, C. E. (2010). Electronic nose as an innovative tool for
the diagnosis of grapevine crown gall. Analytica
Chimica Acta, 672: 20-24.
7. Pan, L., Zhang, W., Zhu, N., Mao, S. and Tu, K.
(2014). Early detection and classification of pathogenic fungal disease in
post-harvest strawberry fruit by electronic nose and gas chromatography–mass
spectrometry. Food Research International,
62: 162-168.
8. Kushalappa, A. C., Lui, L. H., Chen, C. R. and Lee,
B. (2002). Volatile fingerprinting (SPME-GC-FID) to detect and discriminate
diseases of potato tubers. Plant Disease,
86: 131-137.
9. Biondi, E., Blasioli, S., Galeone, A., Spinelli, F.,
Cellini, A., Lucchese, C. and Braschi, I. (2014). Detection of potato brown rot
and ring rot by electronic nose: from laboratory to real scale. Talanta, 129:
422-430.
10. Blasioli, S., Biondi, E., Samudrala, D., Spinelli, F.,
Cellini, A., Bertaccini, A., Cristescu, S. M. and Braschi, I. (2014). Identification
of volatile markers in potato brown rot and ring rot by combined GC–MS and
PTR–MS techniques: study on in vitro
and in vivo samples. Journal of Agricultural and Food Chemistry,
62: 337-347.
11.
Bennett, J. W. and
Inamdar, A. A. (2015). Are some fungal volatile organic compounds (VOCs) mycotoxins?.
Toxins, 7: 3785-3804.
12. Markom, M. A., Shakaff, A. Y. M., Adom, A. H., Ahmad,
M. N., Hidayat, W., Abdullah, A. H. and Fikri, N. A. (2009). Intelligent
electronic nose system for basal stem rot disease detection. Computers and Electronics in Agriculture,
66: 140-146.
13. de Lacy Costello, B. P. J., Ewen, R. J., Gunson, H. E.,
Ratcliffe, N. M. and Spencer-Phillips, P. T. N. (2000). The development of a
sensor system for the early detection of soft rot in stored potato tubers. Measurement Science and Technology, 11:
1685-1691.
14. de Lacy Costello, B. P. J., Ewen, R. J., Gunson, H.,
Ratcliffe, N. M., Sivanand, P. S. and Spencer-Phillips, P. T. N. (2003). A
prototype sensor system for the early detection of microbially linked spoilage
in stored wheat grain. Measurement
Science and Technology, 14: 397-409.
15. Ewen, R. J., Jones, P. R. H., Ratcliffe, N. M. and
Spencer-Phillips, P. T. N. (2004). Identification by gas chromatography-mass
spectrometry of the volatile organic compounds emitted from the wood-rotting
fungi Serpula lacrymans and Coniophora puteana, and from Pinus sylvestris timber. Mycological Research, 108(7): 806-814.
16. Müller, A., Faubert, P., Hagen, M., zuCastell, W.,
Polle, A., Schnitzler, J. and Rosenkranz, M. (2013). Volatile profiles of fungi
– Chemotyping of species and ecological functions. Fungal Genetics and Biology, 54:
25-33.
17. Sawoszczuk, T., Syguła-Cholewi´nska, J. and del
Hoyo-Meléndez, J. M. (2015). Optimization of headspace solid phase
microextraction for the analysis of microbial volatile organic compounds
emitted by fungi: Application to historical objects. Journal of Chromatography A, 1409:
30-45.
18. Cellini, A., Biondi, E., Buriani, G., Farneti, B.,
Rodriguez-Estrada, M. T., Braschi, I., Savioli, S., Blasioli, S., Rocchi, L.,
Biasioli, F., Costa, G. and Spinelli, F. (2016). Characterization of volatile
organic compounds emitted by kiwifruit plants infected with Pseudomonas syringae pv. actinidiae and their effects on host
defences. Trees, 30 (3): 795-806.
19. Souza Silva, E. A., Saboia, G., Jorge, N. C.,
Hoffmann, C., dos Santos Isaias, R. M., Soares, G. L. G. and Zini, C. A.
(2017). Development of a HS-SPME-GC/MS protocol assisted by chemometric tools
to study herbivore induced volatiles in Myrcia
splendens. Talanta, 175: 9-20.
20. Rӧsecke, J., Pietsch, M. and Kӧnig, W.
A. (2000). Volatile constituents of wood-rotting basidiomycetes. Phytochemistry, 54: 747-750.
21. Magan, N. and Evans, P. (2000). Volatiles as an
indicator of fungal activity and differentiation between species, and the
potential use of electronic nose technology for early detection of grain
spoilage. Journal of Stored Products
Research, 36: 319-340.
22. Wheatley, R. E. (2002). The consequences of volatile
organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek, 81: 357-364.
23. Combet, E., Henderson, J., Eastwood, D. C. and
Burton, K. S. (2006). Eight-carbon volatiles in mushrooms and fungi:
properties, analysis, and biosynthesis. Mycoscience,
47: 317-326.
24. Matysik, S., Herbarth, O. and Mueller, A. (2008).
Determination of volatile metabolites originating from mould growth on wall
paper and synthetic media. Journal of
Microbiological Methods, 75: 182-187.
25. Liu, G. Q., Wang, X. L. and Jin, X. C. (2009). Head-space
gas chromatographic analysis for the volatile flavor compounds from submerged culture
broth of Ganoderma sinense (a medicinal
fungus). 3rd International
Conference on Bioinformatics and Biomedical Engineering, pp. 1-3.
26. Wang, X. L., Han, W. J. and Zhou, G. Y. (2009). Analysis
of volatile flavor compounds in submerged cultured Ganoderma sinense mycelium by headspace gas chromatography. 2nd International Conference on
Biomedical Engineering and Informatics, pp. 1-4.
27. Morath, S. U., Hung, R. and Bennett, J. W. (2012). Fungal
volatile organic compounds: A review with emphasis on their biotechnological
potential. Fungal Biology Reviews,
26: 73-83.
28. Kolb, B. and Ettre, L. S. (2006). Static headspace-gas
chromatography: Theory and practice 2nd edition. JohnWiley and Sons, New York: pp. 73-80.
29. Sithersingh, M. J. and Snow, N. H. (2012). Chapter 9
- Headspace-Gas Chromatography, In: Gas Chromatography. Elsevier, Amsterdam: pp.
221-233.
30. Górecki, T., Yu, X. and Pawliszyn, J. (1999). Theory
of analyte extraction by selected porous polymer SPME fibres. Analyst, 124:
643-649.
31. Pawliszyn, J. (1999). Applications of solid phase
microextraction. Royal Society of Chemistry, Cambridge: pp. 39-40.
32.
Cortina,
P. R., Asis, R., Peralta, I. E., Asprellid, P. D. and Santiago, A. N. (2017). Determination
of volatile organic compounds in andean tomato landraces by headspace solid
phase microextraction-gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 28(1):
30-41.
33.
Tressl, R., Bahri, D. and
Engel, K. H. (1982). Formation of eight-carbon and ten-carbon components in
mushrooms (Agaricus campestris). Journal of Agricultural and Food Chemistry,
30: 89-93.
34.
Wurzenberger, M. and Grosch,
W. (1983). Determination of 1 octen-3-ol in mushrooms and in products
containing mushrooms. Z
Lebensm-Unters-Forsch, 176: 16-19.
35.
Wurzenberger, M. and
Grosch, W. (1984). The formation of 1-octen-3-ol from the 10-hydroperoxide
isomer of linoleic-acid by a hydroperoxide lyase in mushrooms Psalliotta bispora. Biochimica et Biophysica Acta, 794: 25-30.
36.
Daisy, B. H., Strobel, G.
A. Castillo, U., Ezra, D., Sears, J., Weaver, D. K. and Runyon, J. B. (2002).
Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology,
148: 3737-3741.