Malaysian Journal of Analytical Sciences Vol 24 No 4 (2020): 599 - 614

 

 

 

 

A FEASIBILITY STUDY ON VOLATILE ORGANIC COMPOUNDS PROFILING OF OIL PALM-Ganoderma INFECTED WOOD FOR BASAL STEM ROT DETECTION

 

(Kajian Kebolehlaksanaan Pemprofilan Sebatian Organik Meruap daripada Kayu Sawit yang Dijangkiti Ganoderma bagi Mengesan Penyakit Reput Pangkal Batang)

 

Zainol Hilmi Nur Hailini*, Idris Abu Seman, Mohd Azmil Mohd Noor, Shariffah-Muzaimah Syed Aripin

 

Malaysian Palm Oil Board,

6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

 

*Corresponding author:  hailini@mpob.gov.my

 

 

Received: 11 March 2020; Accepted: 28 May 2020; Published:  11 August 2020

 

 

Abstract

Volatile organic compounds (VOCs) are commonly released during plant-pathogen interactions due to pathogenicity or plant defence responses. Basal stem rot (BSR) disease caused by Ganoderma boninense fungus remains a serious threat to oil palm cultivation. This study aimed to investigate the feasibility of detecting VOCs released from oil palm wood tissue infected by G. boninense using headspace solid-phase microextraction (HS-SPME) method combined with gas-chromatography mass-spectrometry (GC-MS). Several factors affecting the HS-SPME extraction efficacy were investigated; 0.25 g of sample homogenised in liquid nitrogen was shown to be the most useful preparation procedure, while fibre divinylbenzene/carboxen/polydimethylsiloxane (DVB/Car/PDMS) was shown as the optimum extraction phase. The optimised method was capable of sampling VOCs with high reproducibility with a balanced VOCs profile of various chemical classes. The most abundant VOCs detected were the aliphatic compounds with eight-carbon atoms, 1-octen-3-ol (69.43%) and 3-octanone (10.34%). This preliminarily study reveals that the detected VOCs could also be used as biomarker candidates for basal stem rot disease detection. However, further study is required.

 

Keywords:  basal stem rot, Ganoderma, oil palm, 1-octen-3-ol, 3-octanone

 

Abstrak

Sebatian-sebatian organik meruap (VOCs) biasanya dibebaskan semasa interaksi tumbuhan-patogen kesan kepatogenan atau tindak balas pertahanan tumbuhan. Penyakit reput pangkal batang (BSR) yang disebabkan oleh kulat Ganoderma boninense masih lagi menjadi ancaman serius terhadap penanaman sawit. Kajian ini dijalankan bertujuan menyelidik kebolehlaksanaan pengesanan VOC yang terbebas dari tisu kayu kelapa sawit yang dijangkiti oleh G. boninense menggunakan kaedah mikroekstraksi fasa pepejal-ruang tutupan (HS-SPME) yang digabung bersama kromatografi gas-spektrometri jisim (GC-MS). Beberapa faktor yang mempengaruhi keberkesanan pengambilan HS-SPME telah dikaji; 0.25 g sampel yang dihomogenkan dalam nitrogen cair terbukti sebagai prosedur penyediaan yang paling sesuai, sementara gentian divinilbenzena/karboksena/polidimetilsikloheksana (DVB/Car/PDMS) dibuktikan sebagai fasa pengekstrakan yang optimum. Kaedah yang optimum ini mampu mengekstrak VOCs dengan kebolehulangan yang tinggi dengan profil VOCs yang seimbang dari pelbagai kelas kimia. VOCs yang paling banyak dikesan adalah sebatian-sebatian alifatik dengan atom-atom lapan-karbon, 1-okten-3-ol (69.43%) dan 3-oktanon (10.34%). Kajian awal ini mendedahkan bahawa VOCs yang dikesan juga berpotensi digunakan sebagai penanda biologi bagi pengesanan penyakit reput pangkal batang. Walau bagaimanapun, kajian lanjutan adalah diperlukan.

 

Kata kunci:  reput pangkal batang, Ganoderma, sawit, 1-okten-3-ol, 3-oktanon

 

References

1.      Khusairi, A., Ong-Abdullah, M., Nambiappan, B., Hishamuddin, E., Mohd Noor Izzuddin, Z. B., Razmah, G., Subramaniam, V., Sundram, S. and Ahmad Parveez, G. K. (2019). Oil palm economic performance in Malaysia and R&D progress in 2018.  Journal of Oil Palm Research, 31(2): 165-194.

2.      Rees, R. W., Flood, J., Hasan, Y., Potter, U. and Cooper, R. M. (2009). Basal stem rot of oil palm (Elaeis guineensis); Mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathology, 58: 982-989.

3.      Idris, A. S., NurRashyeda, R., Rusli, M. H., Sundram, S. and Norman, K. (2016). Standard operating procedures (SOP) guidelines for managing Ganoderma disease in oil palm. Malaysian Palm Oil Board, Malaysia: pp. 1-5.

4.      Ariffin, D., Idris, A. S. and Singh, G. (2000). Status of Ganoderma in oil palm, in: Ganoderma diseases of perennial crops (eds) Flood, J., Bridge, P. D. and Holderness, M. CABI Publishing, London: pp. 49- 68.

5.      Spinelli, F., Costa, G., Rondelli, E., Busi, S., Vanneste, J. L., Rodriguez, E. M. T., Savioli, S. and Cristescu, S. M. (2011). Volatile compounds produced by Erwinia amylovora and their potential exploitation for bacterial identification. Acta Horticulturae, 896: 77-84.

6.      Blasioli, S., Biondi, E., Braschi, I., Mazzucchi, U., Bazzi, C. and Gessa, C. E. (2010). Electronic nose as an innovative tool for the diagnosis of grapevine crown gall. Analytica Chimica Acta, 672: 20-24.

7.      Pan, L., Zhang, W., Zhu, N., Mao, S. and Tu, K. (2014). Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography–mass spectrometry. Food Research International, 62: 162-168.

8.      Kushalappa, A. C., Lui, L. H., Chen, C. R. and Lee, B. (2002). Volatile fingerprinting (SPME-GC-FID) to detect and discriminate diseases of potato tubers. Plant Disease, 86: 131-137.

9.      Biondi, E., Blasioli, S., Galeone, A., Spinelli, F., Cellini, A., Lucchese, C. and Braschi, I. (2014). Detection of potato brown rot and ring rot by electronic nose: from laboratory to real scale. Talanta, 129: 422-430.

10.   Blasioli, S., Biondi, E., Samudrala, D., Spinelli, F., Cellini, A., Bertaccini, A., Cristescu, S. M. and Braschi, I. (2014). Identification of volatile markers in potato brown rot and ring rot by combined GC–MS and PTR–MS techniques: study on in vitro and in vivo samples. Journal of Agricultural and Food Chemistry, 62: 337-347.

11.   Bennett, J. W. and Inamdar, A. A. (2015). Are some fungal volatile organic compounds (VOCs) mycotoxins?. Toxins, 7: 3785-3804.

12.   Markom, M. A., Shakaff, A. Y. M., Adom, A. H., Ahmad, M. N., Hidayat, W., Abdullah, A. H. and Fikri, N. A. (2009). Intelligent electronic nose system for basal stem rot disease detection. Computers and Electronics in Agriculture, 66: 140-146.

13.   de Lacy Costello, B. P. J., Ewen, R. J., Gunson, H. E., Ratcliffe, N. M. and Spencer-Phillips, P. T. N. (2000). The development of a sensor system for the early detection of soft rot in stored potato tubers. Measurement Science and Technology, 11: 1685-1691.

14.   de Lacy Costello, B. P. J., Ewen, R. J., Gunson, H., Ratcliffe, N. M., Sivanand, P. S. and Spencer-Phillips, P. T. N. (2003). A prototype sensor system for the early detection of microbially linked spoilage in stored wheat grain. Measurement Science and Technology, 14: 397-409.

15.   Ewen, R. J., Jones, P. R. H., Ratcliffe, N. M. and Spencer-Phillips, P. T. N. (2004). Identification by gas chromatography-mass spectrometry of the volatile organic compounds emitted from the wood-rotting fungi Serpula lacrymans and Coniophora puteana, and from Pinus sylvestris timber. Mycological Research, 108(7): 806-814.

16.   Müller, A., Faubert, P., Hagen, M., zuCastell, W., Polle, A., Schnitzler, J. and Rosenkranz, M. (2013). Volatile profiles of fungi – Chemotyping of species and ecological functions. Fungal Genetics and Biology, 54: 25-33.

17.   Sawoszczuk, T., Syguła-Cholewi´nska, J. and del Hoyo-Meléndez, J. M. (2015). Optimization of headspace solid phase microextraction for the analysis of microbial volatile organic compounds emitted by fungi: Application to historical objects. Journal of Chromatography A, 1409: 30-45.

18.   Cellini, A., Biondi, E., Buriani, G., Farneti, B., Rodriguez-Estrada, M. T., Braschi, I., Savioli, S., Blasioli, S., Rocchi, L., Biasioli, F., Costa, G. and Spinelli, F. (2016). Characterization of volatile organic compounds emitted by kiwifruit plants infected with Pseudomonas syringae pv. actinidiae and their effects on host defences. Trees, 30 (3): 795-806.

19.   Souza Silva, E. A., Saboia, G., Jorge, N. C., Hoffmann, C., dos Santos Isaias, R. M., Soares, G. L. G. and Zini, C. A. (2017). Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore induced volatiles in Myrcia splendens. Talanta, 175: 9-20.

20.   Rӧsecke, J., Pietsch, M. and Kӧnig, W. A. (2000). Volatile constituents of wood-rotting basidiomycetes. Phytochemistry, 54: 747-750.

21.   Magan, N. and Evans, P. (2000). Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. Journal of Stored Products Research, 36: 319-340.

22.   Wheatley, R. E. (2002). The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek, 81: 357-364.

23.   Combet, E., Henderson, J., Eastwood, D. C. and Burton, K. S. (2006). Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience, 47: 317-326.

24.   Matysik, S., Herbarth, O. and Mueller, A. (2008). Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. Journal of Microbiological Methods, 75: 182-187.

25.   Liu, G. Q., Wang, X. L. and Jin, X. C. (2009). Head-space gas chromatographic analysis for the volatile flavor compounds from submerged culture broth of Ganoderma sinense (a medicinal fungus). 3rd International Conference on Bioinformatics and Biomedical Engineering, pp. 1-3.

26.   Wang, X. L., Han, W. J. and Zhou, G. Y. (2009). Analysis of volatile flavor compounds in submerged cultured Ganoderma sinense mycelium by headspace gas chromatography. 2nd International Conference on Biomedical Engineering and Informatics, pp. 1-4.

27.   Morath, S. U., Hung, R. and Bennett, J. W. (2012). Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26: 73-83.

28.   Kolb, B. and Ettre, L. S. (2006). Static headspace-gas chromatography: Theory and practice 2nd edition.  JohnWiley and Sons, New York: pp. 73-80.

29.   Sithersingh, M. J. and Snow, N. H. (2012). Chapter 9 - Headspace-Gas Chromatography, In: Gas Chromatography. Elsevier, Amsterdam: pp. 221-233.

30.   Górecki, T., Yu, X. and Pawliszyn, J. (1999). Theory of analyte extraction by selected porous polymer SPME fibres. Analyst, 124: 643-649.

31.   Pawliszyn, J. (1999). Applications of solid phase microextraction. Royal Society of Chemistry, Cambridge: pp. 39-40.

32.   Cortina, P. R., Asis, R., Peralta, I. E., Asprellid, P. D. and Santiago, A. N. (2017). Determination of volatile organic compounds in andean tomato landraces by headspace solid phase microextraction-gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 28(1): 30-41.

33.   Tressl, R., Bahri, D. and Engel, K. H. (1982). Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). Journal of Agricultural and Food Chemistry, 30: 89-93.

34.   Wurzenberger, M. and Grosch, W. (1983). Determination of 1 octen-3-ol in mushrooms and in products containing mushrooms. Z Lebensm-Unters-Forsch, 176: 16-19.

35.   Wurzenberger, M. and Grosch, W. (1984). The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic-acid by a hydroperoxide lyase in mushrooms Psalliotta bispora. Biochimica et Biophysica Acta, 794: 25-30.

36.   Daisy, B. H., Strobel, G. A. Castillo, U., Ezra, D., Sears, J., Weaver, D. K. and Runyon, J. B. (2002). Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148: 3737-3741.