Malaysian
Journal of Analytical Sciences Vol 24 No 4
(2020): 587 - 598
IMPACTS
OF CITRIC ACID ON THE PHYTOEXTRACTION OF ZINC (Zn) USING SORGHUM (Sorghum bicolor (L.) Moench) PLANTS
(Kesan Asid Sitrik Terhadap
Pengekstrakan Fito Zink (Zn) Mengunakan Tumbuhan Sorghum (Sorghum bicolor (L.) Moench))
Hamza
Badamasi1*, Muhammad Saminu Dagari 2, Isyaku Sale3
1Department of
Chemistry,
Federal University Dutse, Jigawa State, Nigeria
2Department of
Chemistry,
Federal University Gashua, Yobe State, Nigeria
3Department of Polymer
Technology,
Husaini Adamu Federal Polytechnic Kazaure,
Jigawa State, Nigeria
*Corresponding author: hamza.badamasi@fud.edu.ng
Received: 20 November 2019;
Accepted: 21 June 2020; Published: 11 August
2020
Abstract
Greenhouse hydroponic experiments were carried out to
examine the impacts of citric acid on Zn uptake and phytoextraction potentials
of sorghum (Sorghum bicolor (L.) Moench). Two-week-old
seedlings transplanted in hydroponic solutions were treated with different
doses of Zn in the concentration range of 5, 25, 50, 100, and 200 mg/L alone or in combination with 10 mM citric acid. After 21 days of culture, the
plants were harvested, separated into roots and shoots, and then dried. Fresh
and dry weights were measured using Sartorius balance, Zn uptakes in the roots
and shoots were determined by atomic absorption spectrometry. Translocation
factor (TF) was determined by dividing Zn concentrations in roots by Zn
concentration in the shoots, bioconcentration factor (BCF) was determined as a
ratio of Zn concentration in the roots to Zn concentration in the hydroponic
solution. Proline, pigments, protein, and ascorbate content were measured
spectrophotometrically using acid ninhydrin, acetone,
Lowry assay, and dinitrophenyl hydrazine methods respectively. The results
indicate that Zn uptake, fresh and dry weights, TF, BCF, proline, and ascorbate
contents were concentration dependent with a more significant increase (p < 0.05) after the
application of citric acid. Pigments and protein contents were, however
severely decreased with increasing Zn concentrations and appreciated gradually
with the addition of citric acid. Thus, citric acid efficiently increased
phytoextractability of Zn and reduced Zn-induced toxicity; Sorghum bicolor
LM was non-hyperaccumulator of Zn but may be used for phytoremediation of
Zn contaminated environments with assistance of citric acid.
Keywords: citric acid, hydroponic, phytoextraction, Sorghum bicolor (L) Moench,
Zn
Abstrak
Kajian
hidroponik rumah hijau telah dijalankan untuk menkaji kesan asid sitrik
terhadap pengambilan Zn dan potensi pengekstrakan fito bagi sorghum (Sorghum
bicolor (L.) Moench). Pembenihan selama 2
minggu di dalam larutan hidroponik telah dirawat mengunakan dos Zn yang berbeza
di dalam julat kepekatan 5, 25, 50, 100, dan 200 mg/L tunggal atau
gabungan bersama 10 mM asid sitrik.
Selepas 21 hari dikultur, tumhuban dituai, diasingkan kepada bahagian pucuk dan
akar, dan kemudian dikeringkan. Berat asal dan kering telah diukur mengunakan
penimbang Sartorius, manakala pengambilan Zn pada bahagian akar dan pucuk telah
ditentukan mengunakan spektrometri serapan atom. Faktor translokasi (TF) telah
ditentukan dengan membahagi kepekatan Zn di dalam akar dengan kepekatan Zn pada
bahagian pucuk, manakala factor biokepekatan (BCF) telah ditentukan dengan
nisbah kepekatan Zn di dalam akar kepada kepekatan Zn di dalam larutan
hidroponik. Prolin, pigmen, protein, dan kandungan askorbat telah diukur
mengunakan spektrofoto masing-masing mengunakan kaedah asid ninhydrin, aseton,
ujian Lowry, dan dinitrofenil hidrazin. Keputusan menunjukan pengambilan Zn,
berat asal dan kering, TF, BCF, prolin, dan kandungan askorbat mempunyai
kepekatan berbeza dengan peningkatan signifikan (p < 0.05) selepas
aplikasi asid sitrik. Kandungan pigmen dan protein walaubagaimana pun merosot
dengan peningkatan kepekatan Zn dan meningkat dengan penambahan asid sitrik. Maka, asid sitrik berkesan meningkatkan
kebolehupayaan fito bagi Zn dan mengurangkan ransangan ketoksikan Zn; Sorghum
bicolor LM tak berfungsi penumpukan hiper bagi Zn tetapi boleh digunakan bagi
pemulihan fito bagi persekitaran yang tercemar dengan Zn dengan bantuan asid
sitrik.
Kata
kunci: asid
sitrik, hidroponik, pengesktrakan fito, Sorghum
bicolor (L) Moench, Zn
References
1. Blaylock, M. J. and
Huang, J. W. (2000). Phytoremediation of toxic metals using plants to clean up
the environment. John Wiley & Sons Inc., New York: pp. 53-70.
2. Alloway, B. J. (2004).
Zinc in soils and crop nutrition. IZA Publications, International Zinc
Association, Brussels: pp. 135-150.
3. Chaney, R. L. (1993).
Plant uptake of inorganic waste constituents. Park Ridge, Noyes Data
Corporation, New Jersey, USA: pp. 50-76.
4. Sharma. P. and Dubey, R.
S. (2007). Involvement of oxidative stress and role of antioxidative defense
system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Reports, 26(1): 2027-2038.
5. Lo’pez-Mosquera,
M.E., Moiro’n, C. and Carral, E. (2000). Use of dairy-industry sludge as
fertilizer for grasslands in northwest Spain: heavy metal levels in the soil
and plants. Resources, Conservation and
Recycling, 30(1): 95-109.
6. Islam, E., Yang, X.
E., He, Z. L. and Mahmood, Q. (2007).
Assessing potential dietary toxicity of heavy metals in selected
vegetables and food crops. Journal of
Zhejiang University of Science B, 20(1): 1-13.
7. Achakzai, A. K. K.,
Bazai, Z. A. and Kayani, S. A. (2011). Accumulation of heavy metals by lettuce
(Lactuca sativa L.) irrigated with
different levels of wastewater of Quetta city. Pakistan Journal of Botany, 43: 2953-2960.
8. Zhao, Z., Xi, M.,
Liang, G., Liu, X., Bai, Z. and Huang, Y. (2010). Effects of IDSA, EDDS and
EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays, L.). Journal of Hazardous Materials, 181(2): 455-459.
9. Gunawardana, B.,
Singhal, N. and Johnson, A. (2010).
Amendments and their combined application for enhanced copper, cadmium,
lead uptake by Lolium perenne. Plant and Soil, 329 (3):283-294.
10. Bassi, R., Prasher, S.
O. and Simpson, B. K (2000). Extraction of metals from a contaminated sandy
soil using citric acid. Environmental
Progress, 19(4): 275-282.
11. Irannajad, M., Meshkini,
M. and Azadmehr, A. R. (2013). Leaching of zinc from low grade oxide ore using
citric acid. Physicochemical problems of
Mineral Processing. 49(5):547-555.
12. Aba, D. A., Marley, P.
S. and Maigida, D. N. (2008). Cereals crops of Nigeria; principles production
and utilization. Ade-commercial press, Zaria, Nigeria: pp. 40-53.
13. Obilana, A. T. (1981).
International Symposium on Sorghum grain quality, ICRISAT, Patancheru:
pp.40-45.
14. Patterson, J. J. and
Olson, J. J. (1983). Effects of heavy metals on radicle growth of selected
woody species germinated on filter paper, mineral and organic soil substrates. Canadian Journal of Forest Research, 13
(1): 233-238.
15. IITA (1979).
Laboratory manual on basic soil and plant analyses, 3rd edition,
Longman London, UK: pp. 3-12.
16. Juo, A. S. B. (1988).
Selected methods for soil and plant analysis, Manual Series No.1 International
Institute of Tropical Agriculture (IITA), Ibadan, Nigeria: pp. 10-30.
17. Taiz, L. and Zeiger,
E. (2002). Plant physiology, Sinauer Associates, (eds.). Sunderland, U.S.A: pp.
67-86.
18. Shrikrishna, R. S. and
Singh. S. (2012). Effect of zinc on yield, nutrient uptake and quality of
Indian mustard. Journal of Indian Society
of soil Science, 40(3): 321-325.
19. Bates, L. S., Waldren,
R. P. and Teare, I. D. (1973). Rapid determination of free proline for water
stress studies. Plant and Soil, 39(1):205-207.
20. Arnon, D. I. (1949).
Copper enzymes in isolated chloroplast, polyphenoloxidase in Beta vulgaris. Plant Physiolology, 24(5): 1-15.
21. Lichtenthaler, H. and
Wellburn, A. (1983). Determination of total carotenoids and chlorophylls a and
b of leaf extract in different solvent. Biochemical
Society Transaction, 11(1): 591-592.
22. Lowry,
O.H., Rosembrough, N. J., Farr, A. L and Randall, R. J. (1951). Protein
measurement with the Folin phenol reagent. Journal
of Biological Chemistry, 193(1): 267-275.
23. Mukherjee,
S. P. and Choudhari, M. A. (1983). Implication of water stress induced changes
in the levels of endogenous ascorbic acid and hydrogen perioxide in Vigna seedlings. Physiology
Plant Journal, 58: 166-170.
24. Hafeez, B., Khanif, Y.
M. and Saleem, M. (2013). Role of zinc in plant nutrition-A review. American Journal of Experimental Agriculture,
3(2):374-391.
25. Hasan,
M. H., Reza, A. and Habib K. (20120.
Effect of zinc toxicity on plant productivity, chlorophyll and Zn
contents of Sorghum (Sorghum bicolor)
and common lambsquarter (Chenopodium
album). International Journal of Agricultural Research and Review, 2(1):
247-254.
26. Manivasagaperuma,
R., Vijayarengan, P., Balamurugan, S. and Thiyagarajan G. (2012). Effect of zinc on growth, dry matter yield
and nutrient content of Vigna Radiata
(L.) Wilczek. International Journal of Recent Scientific Research, 3(3):687-692.
27. Anamika, S., Eaparn,
S. and Fulekar, M. (2009). Phytoremediation of Cd, Pb and Zn by Brassica juncea L, Czern. Cross Journal of Applied Biosciences, 13(1):
726-736.
28. Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Zhang, W. J., Li, W. and
Lin, Z. P. (2009). The effect of excess Zn on mineral nutrition and ant
oxidative response in rapeseed seedlings. Chemosphere,
75:1468-1476.
29. Davis, J. G. and
Parker, M. B. (1993). Zinc toxicity symptom development and partitioning of
biomass and Zn in peanut plants. Journal
of plant Nutrition, 16(2): 2353-2369.
30. Wong, M. H., Li, W. C.
and Zhang, Y. C. (2009). Effect of bacteria on enhanced metal uptake of the
Cd/Zn hyperaccumulating plant Sedum
alferedii. Journal of Experimental
Botany, 58(1): 4173-4182.
31. Carl, E. S., Heather,
D. T., Timothy, W. C. and Williams, M. R. (2013). Zn availability in
hydroponics culture influences Glucosinolate concentration in Brassica rapa. Horticultural Science, 39: 84-86.
32. Turgut, C., Pepe, M.
K. and Culright, T. J. (2008). Effects of EDTA and citric acid on
phytoremediation of Cd, Cr, and Ni from soil using Helianthus annus. Environmental
Pollution, 131:147-154.
33. Tandy, S., Schulin, R.
and Norwaek (2008). Uptake of metals and Chelant-assisted phytoextraction with
EDDS related to the solubilized metal concentration. Environmental Science and Technology, 40(1): 2753-2758.
34. Justin, V., Majid, N.,
Islam, M. M. and Abdu A, (2011). Assessment of heavy metal uptake and
translocation in Acacia mangium for
phytoremediation of cadmium contaminated soil. Journal of Food Agriculture and Environment, 9(2): 588-592.
35. Han, F., Shan, X. Q.,
Zhang, S. Z., Wen, B. and Owens, B. (2011). Enhanced cadmium accumulation in
maize roots: the impact of organic acids. Plant
and Soil, 289: 355-368.
36. Ma, L.Q., Komar, K.
M., Zhang, T. U. C., Caiv, W. and Kenmelley E. D. (2012). A fern that
hyperacumulates arsenic. Nature,
11(1): 409-579.
37. Sharma, S. S., Schat,
H. and Vooijs, R. (1998). In vitro
alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry, 49:1531-1535.
38. Siripornadulsil, S.,
Traina, S., Verma, D. P. S. and Sayre, R. T. (2014). Molecular mechanisms of
proline–mediated tolerance to heavy metals in transgenic microalgae, Plant Cell, 14:2837-2947.
39. Kishor, P. B. K,
Sangam, S., Amrutha, R. N., Laxmip, S. N., Naidu, K. R., Rao, K. R. S. S., Rao,
S., Reddy, K. S., Theriappan, P. and Screenivasule, N. (1995). Regulation of
proline synthesis, degradation, uptake and transport in higher plants; its
implication in plant growth and abiotic stress tolerance. Current Science, 88: 424-438.
40. Bohnet, H. J. and
Jersen, R. J. (1993). Strategies for engineering water–stress tolerance in
plants. Trends in Biotechnology, 14(1):
89-97.
41. Kandziora-Ciupa,
M., Nadgórska-Soch, A., Barczyk, G. and Ciepa, R. (2017). Bioaccumulation of
heavy metals and ecophysiological responses to heavy metal stress in selected
populations of Vaccinium myrtillus L.
and Vaccinium vitis-idaea L. Ecotoxicology, 26(1): 966-980.
42. Olkhovych,
O., Volkogon. M., Taran. N., Batsmanova, L. and Kravchenko, I. (2016). The
effect of copper and zinc nanoparticles on the growth parameters, contents of
ascorbic acid, and qualitative composition of amino acids and acylcarnitines in
Pistia stratiotes L. (Araceae). Nanoscale Research Letters, 11:218-228.
43. Dolatabadian, A. and Jouneghani, S. (2009). Impact of exogenous ascorbic acid on antioxidant
activity and some physiological traits of common bean subjected to salinity
stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2): 165-172.
44. Chen,
Y. X., Lin, Q., Luo, Y. M., He, Y. J., Zhen, S., Yu, Y. L., Tian, W. and Ming
G. M. (2003). The role of citric acid on the phytoremediation of heavy metal
contaminated soil. Chemosphere,
50(1): 807-811.
45. Küpper, H. F. and
Spiller, M. (1996). Environmental relevance of heavy metal substituted
chlorophyll using the example of water plant. Journal of Experimental Biology, 47:259-266.
46. Balashouri, P. (2009).
Effects of zinc on germination, growth, pigment content and phytomass of Vignia Radiata and sorghum. Journal of Ecobiology, 7:109-114.
47. Fikriye, K. Z. and
Omer, M. (2008). Effects of some heavy metals on concentration of chlorophyll,
proline and antioxidant chemicals in beans (Phaseoley
Vulgarus. L) seedlings. Biological
Craco-Viensia. 47:157-164.
48. Doncheva, S. and
Stoyanova, Z. (2010). The effect of Zinc supply and succinate treatment on
plant growth and mineral uptake in pea plant. Brazilian Journal of Plant Physiology, 14(1):1871-1880.
49. Alia, N., Sarda, K., Said, M., Salma, K., Sadia, A.,
Sadaf, S., Toqeer, A. and Miklas, S. (2015). Toxicity and bioaccumulation of
heavy metals in spinach (Spinacia oleracea) grown in a controlled
environment. International Journal of
Environmental Resources and Public Health, 12(2):74-84.
50. Lin,
R. Z., Wang, X. R., Luo, Y., Du, W. C., Guo, H. Y., Yin, D. Q. (2007). Effects
of soil cadmium on growth, oxidative stress and antioxidant system in wheat
seedlings (Triticum aestivum L.). Chemosphere, 69(2): 89-98.