Malaysian Journal of Analytical Sciences Vol 24 No 4 (2020): 587 - 598

 

 

 

 

IMPACTS OF CITRIC ACID ON THE PHYTOEXTRACTION OF ZINC (Zn) USING SORGHUM (Sorghum bicolor (L.) Moench) PLANTS

 

(Kesan Asid Sitrik Terhadap Pengekstrakan Fito Zink (Zn) Mengunakan Tumbuhan Sorghum (Sorghum bicolor (L.) Moench))

 

Hamza Badamasi1*, Muhammad Saminu Dagari 2, Isyaku Sale3

 

1Department of Chemistry,

Federal University Dutse, Jigawa State, Nigeria

2Department of Chemistry,

Federal University Gashua, Yobe State, Nigeria

3Department of Polymer Technology,

Husaini Adamu Federal Polytechnic Kazaure, Jigawa State, Nigeria

 

*Corresponding author:  hamza.badamasi@fud.edu.ng

 

 

Received: 20 November 2019; Accepted: 21 June 2020; Published:  11 August 2020

 

 

Abstract

Greenhouse hydroponic experiments were carried out to examine the impacts of citric acid on Zn uptake and phytoextraction potentials of sorghum (Sorghum bicolor (L.) Moench). Two-week-old seedlings transplanted in hydroponic solutions were treated with different doses of Zn in the concentration range of 5, 25, 50, 100, and 200 mg/L alone or in combination with 10 mM citric acid. After 21 days of culture, the plants were harvested, separated into roots and shoots, and then dried. Fresh and dry weights were measured using Sartorius balance, Zn uptakes in the roots and shoots were determined by atomic absorption spectrometry. Translocation factor (TF) was determined by dividing Zn concentrations in roots by Zn concentration in the shoots, bioconcentration factor (BCF) was determined as a ratio of Zn concentration in the roots to Zn concentration in the hydroponic solution. Proline, pigments, protein, and ascorbate content were measured spectrophotometrically using acid ninhydrin, acetone, Lowry assay, and dinitrophenyl hydrazine methods respectively. The results indicate that Zn uptake, fresh and dry weights, TF, BCF, proline, and ascorbate contents were concentration dependent with a more significant increase (p < 0.05) after the application of citric acid. Pigments and protein contents were, however severely decreased with increasing Zn concentrations and appreciated gradually with the addition of citric acid. Thus, citric acid efficiently increased phytoextractability of Zn and reduced Zn-induced toxicity; Sorghum bicolor LM was non-hyperaccumulator of Zn but may be used for phytoremediation of Zn contaminated environments with assistance of citric acid.

 

Keywords:  citric acid, hydroponic, phytoextraction, Sorghum bicolor (L) Moench, Zn

 

Abstrak

Kajian hidroponik rumah hijau telah dijalankan untuk menkaji kesan asid sitrik terhadap pengambilan Zn dan potensi pengekstrakan fito bagi sorghum (Sorghum bicolor (L.) Moench). Pembenihan selama 2 minggu di dalam larutan hidroponik telah dirawat mengunakan dos Zn yang berbeza di dalam julat kepekatan 5, 25, 50, 100, dan 200 mg/L tunggal atau gabungan bersama 10 mM asid sitrik. Selepas 21 hari dikultur, tumhuban dituai, diasingkan kepada bahagian pucuk dan akar, dan kemudian dikeringkan. Berat asal dan kering telah diukur mengunakan penimbang Sartorius, manakala pengambilan Zn pada bahagian akar dan pucuk telah ditentukan mengunakan spektrometri serapan atom. Faktor translokasi (TF) telah ditentukan dengan membahagi kepekatan Zn di dalam akar dengan kepekatan Zn pada bahagian pucuk, manakala factor biokepekatan (BCF) telah ditentukan dengan nisbah kepekatan Zn di dalam akar kepada kepekatan Zn di dalam larutan hidroponik. Prolin, pigmen, protein, dan kandungan askorbat telah diukur mengunakan spektrofoto masing-masing mengunakan kaedah asid ninhydrin, aseton, ujian Lowry, dan dinitrofenil hidrazin. Keputusan menunjukan pengambilan Zn, berat asal dan kering, TF, BCF, prolin, dan kandungan askorbat mempunyai kepekatan berbeza dengan peningkatan signifikan (p < 0.05) selepas aplikasi asid sitrik. Kandungan pigmen dan protein walaubagaimana pun merosot dengan peningkatan kepekatan Zn dan meningkat dengan penambahan asid sitrik. Maka, asid sitrik berkesan meningkatkan kebolehupayaan fito bagi Zn dan mengurangkan ransangan ketoksikan Zn; Sorghum bicolor LM tak berfungsi penumpukan hiper bagi Zn tetapi boleh digunakan bagi pemulihan fito bagi persekitaran yang tercemar dengan Zn dengan bantuan asid sitrik.

 

Kata kunci:  asid sitrik, hidroponik, pengesktrakan fito, Sorghum bicolor (L) Moench, Zn

 

References

1.      Blaylock, M. J. and Huang, J. W. (2000). Phytoremediation of toxic metals using plants to clean up the environment. John Wiley & Sons Inc., New York: pp. 53-70.

2.      Alloway, B. J. (2004). Zinc in soils and crop nutrition. IZA Publications, International Zinc Association, Brussels: pp. 135-150.

3.      Chaney, R. L. (1993). Plant uptake of inorganic waste constituents. Park Ridge, Noyes Data Corporation, New Jersey, USA: pp. 50-76.

4.      Sharma. P. and Dubey, R. S. (2007). Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Reports, 26(1): 2027-2038.

5.      Lo’pez-Mosquera, M.E., Moiro’n, C. and Carral, E. (2000). Use of dairy-industry sludge as fertilizer for grasslands in northwest Spain: heavy metal levels in the soil and plants. Resources, Conservation and Recycling, 30(1): 95-109.

6.      Islam, E., Yang, X. E., He, Z. L. and Mahmood, Q. (2007).  Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. Journal of Zhejiang University of Science B, 20(1): 1-13.

7.      Achakzai, A. K. K., Bazai, Z. A. and Kayani, S. A. (2011). Accumulation of heavy metals by lettuce (Lactuca sativa L.) irrigated with different levels of wastewater of Quetta city. Pakistan Journal of Botany, 43: 2953-2960.

8.      Zhao, Z., Xi, M., Liang, G., Liu, X., Bai, Z. and Huang, Y. (2010). Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays, L.). Journal of Hazardous Materials, 181(2): 455-459.

9.      Gunawardana, B., Singhal, N. and Johnson, A. (2010).  Amendments and their combined application for enhanced copper, cadmium, lead uptake by Lolium perenne. Plant and Soil, 329 (3):283-294.

10.   Bassi, R., Prasher, S. O. and Simpson, B. K (2000). Extraction of metals from a contaminated sandy soil using citric acid. Environmental Progress, 19(4): 275-282.

11.   Irannajad, M., Meshkini, M. and Azadmehr, A. R. (2013). Leaching of zinc from low grade oxide ore using citric acid. Physicochemical problems of Mineral Processing. 49(5):547-555.

12.   Aba, D. A., Marley, P. S. and Maigida, D. N. (2008). Cereals crops of Nigeria; principles production and utilization. Ade-commercial press, Zaria, Nigeria: pp. 40-53.

13.   Obilana, A. T. (1981). International Symposium on Sorghum grain quality, ICRISAT, Patancheru: pp.40-45.

14.   Patterson, J. J. and Olson, J. J. (1983). Effects of heavy metals on radicle growth of selected woody species germinated on filter paper, mineral and organic soil substrates. Canadian Journal of Forest Research, 13 (1): 233-238.

15.   IITA (1979). Laboratory manual on basic soil and plant analyses, 3rd edition, Longman London, UK: pp. 3-12.

16.   Juo, A. S. B. (1988). Selected methods for soil and plant analysis, Manual Series No.1 International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria: pp. 10-30.

17.   Taiz, L. and Zeiger, E. (2002). Plant physiology, Sinauer Associates, (eds.). Sunderland, U.S.A: pp. 67-86.

18.   Shrikrishna, R. S. and Singh. S. (2012). Effect of zinc on yield, nutrient uptake and quality of Indian mustard. Journal of Indian Society of soil Science, 40(3): 321-325.

19.   Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1):205-207.

20.   Arnon, D. I. (1949). Copper enzymes in isolated chloroplast, polyphenoloxidase in Beta vulgaris. Plant Physiolology, 24(5): 1-15.

21.   Lichtenthaler, H. and Wellburn, A. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extract in different solvent. Biochemical Society Transaction, 11(1): 591-592.

22.   Lowry, O.H., Rosembrough, N. J., Farr, A. L and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1): 267-275.

23.   Mukherjee, S. P. and Choudhari, M. A. (1983). Implication of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen perioxide in Vigna seedlings. Physiology Plant Journal, 58: 166-170.

24.   Hafeez, B., Khanif, Y. M. and Saleem, M. (2013). Role of zinc in plant nutrition-A review. American Journal of Experimental Agriculture, 3(2):374-391.

25.   Hasan, M. H., Reza, A. and Habib K. (20120.  Effect of zinc toxicity on plant productivity, chlorophyll and Zn contents of Sorghum (Sorghum bicolor) and common lambsquarter (Chenopodium album). International Journal of Agricultural Research and Review, 2(1): 247-254.

26.   Manivasagaperuma, R., Vijayarengan, P., Balamurugan, S. and Thiyagarajan G. (2012).  Effect of zinc on growth, dry matter yield and nutrient content of Vigna Radiata (L.) Wilczek.  International Journal of Recent Scientific Research, 3(3):687-692.

27.   Anamika, S., Eaparn, S. and Fulekar, M. (2009). Phytoremediation of Cd, Pb and Zn by Brassica juncea L, Czern. Cross Journal of Applied Biosciences, 13(1): 726-736.

28.   Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Zhang, W. J., Li, W. and Lin, Z. P. (2009). The effect of excess Zn on mineral nutrition and ant oxidative response in rapeseed seedlings. Chemosphere, 75:1468-1476.

29.   Davis, J. G. and Parker, M. B. (1993). Zinc toxicity symptom development and partitioning of biomass and Zn in peanut plants. Journal of plant Nutrition, 16(2): 2353-2369.

30.   Wong, M. H., Li, W. C. and Zhang, Y. C. (2009). Effect of bacteria on enhanced metal uptake of the Cd/Zn hyperaccumulating plant Sedum alferedii. Journal of Experimental Botany, 58(1): 4173-4182.

31.   Carl, E. S., Heather, D. T., Timothy, W. C. and Williams, M. R. (2013). Zn availability in hydroponics culture influences Glucosinolate concentration in Brassica rapa. Horticultural Science, 39: 84-86.

32.   Turgut, C., Pepe, M. K. and Culright, T. J. (2008). Effects of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annus. Environmental Pollution, 131:147-154.

33.   Tandy, S., Schulin, R. and Norwaek (2008). Uptake of metals and Chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environmental Science and Technology, 40(1): 2753-2758.

34.   Justin, V., Majid, N., Islam, M. M. and Abdu A, (2011). Assessment of heavy metal uptake and translocation in Acacia mangium for phytoremediation of cadmium contaminated soil. Journal of Food Agriculture and Environment, 9(2): 588-592.

35.   Han, F., Shan, X. Q., Zhang, S. Z., Wen, B. and Owens, B. (2011). Enhanced cadmium accumulation in maize roots: the impact of organic acids. Plant and Soil, 289: 355-368.

36.   Ma, L.Q., Komar, K. M., Zhang, T. U. C., Caiv, W. and Kenmelley E. D. (2012). A fern that hyperacumulates arsenic. Nature, 11(1): 409-579.

37.   Sharma, S. S., Schat, H. and Vooijs, R. (1998).  In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry, 49:1531-1535.

38.   Siripornadulsil, S., Traina, S., Verma, D. P. S. and Sayre, R. T. (2014). Molecular mechanisms of proline–mediated tolerance to heavy metals in transgenic microalgae, Plant Cell, 14:2837-2947.

39.   Kishor, P. B. K, Sangam, S., Amrutha, R. N., Laxmip, S. N., Naidu, K. R., Rao, K. R. S. S., Rao, S., Reddy, K. S., Theriappan, P. and Screenivasule, N. (1995). Regulation of proline synthesis, degradation, uptake and transport in higher plants; its implication in plant growth and abiotic stress tolerance. Current Science, 88: 424-438.

40.   Bohnet, H. J. and Jersen, R. J. (1993). Strategies for engineering water–stress tolerance in plants. Trends in Biotechnology, 14(1): 89-97.

41.   Kandziora-Ciupa, M., Nadgórska-Soch, A., Barczyk, G. and Ciepa, R. (2017).  Bioaccumulation of heavy metals and ecophysiological responses to heavy metal stress in selected populations of Vaccinium myrtillus L. and Vaccinium vitis-idaea L. Ecotoxicology, 26(1): 966-980.

42.   Olkhovych, O., Volkogon. M., Taran. N., Batsmanova, L. and Kravchenko, I. (2016). The effect of copper and zinc nanoparticles on the growth parameters, contents of ascorbic acid, and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. (Araceae). Nanoscale Research Letters, 11:218-228.

43.   Dolatabadian, A. and Jouneghani, S. (2009). Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2): 165-172.

44.   Chen, Y. X., Lin, Q., Luo, Y. M., He, Y. J., Zhen, S., Yu, Y. L., Tian, W. and Ming G. M. (2003). The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere, 50(1): 807-811.

45.   Küpper, H. F. and Spiller, M. (1996). Environmental relevance of heavy metal substituted chlorophyll using the example of water plant. Journal of Experimental Biology, 47:259-266.

46.   Balashouri, P. (2009). Effects of zinc on germination, growth, pigment content and phytomass of Vignia Radiata and sorghum. Journal of Ecobiology, 7:109-114.

47.   Fikriye, K. Z. and Omer, M. (2008). Effects of some heavy metals on concentration of chlorophyll, proline and antioxidant chemicals in beans (Phaseoley Vulgarus. L) seedlings. Biological Craco-Viensia. 47:157-164.

48.   Doncheva, S. and Stoyanova, Z. (2010). The effect of Zinc supply and succinate treatment on plant growth and mineral uptake in pea plant. Brazilian Journal of Plant Physiology, 14(1):1871-1880.

49.   Alia, N., Sarda, K., Said, M., Salma, K., Sadia, A., Sadaf, S., Toqeer, A. and Miklas, S. (2015). Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. International Journal of Environmental Resources and Public Health, 12(2):74-84.

50.   Lin, R. Z., Wang, X. R., Luo, Y., Du, W. C., Guo, H. Y., Yin, D. Q. (2007). Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere, 69(2): 89-98.