Malaysian
Journal of Analytical Sciences Vol 24 No 4
(2020): 578 - 586
STABILISATION OF PEAT SOIL USING MAGNESIUM
OXIDE: A PRELIMINARY STUDY
(Penstabilan Tanah Gambut
Menggunakan Magnesium Oksida: Satu Kajian Awal)
Lily
Suhaila Yacob* and Amelia Md Som
Green Chemistry & Sustainable Technology Cluster,
Universiti Kuala Lumpur-Malaysian Institute
Chemical & Bioengineering Technology, 78000 Alor Gajah, Malacca, Malaysia
*Corresponding author: lilysuhaila@unikl.edu.my
Received: 20 November 2019; Accepted: 30 June 2020; Published: 11 August 2020
Abstract
This is a preliminary study for the stabilisation of
peat soil from Teluk Kerang, Pontian, Johor using ordinary Portland cement
(OPC) and magnesium oxide (MgO) as binders. Spent garnet and sand were used as
fillers. In Malaysia, peat soil has been identified as one of the major groups
of soils with low shear strength and high compressibility. Peatlands are used
as an alternative option for future development due to lack of suitable lands
and expensive cost. The presence of soft or peaty soil is a major problem in
construction. The properties of peat soil used in this study were analysed and
it was found to be acidic with the pH value of 4.15. According to von Post
classification, peat soil can be classified as H3. In this research, various ratios
of mix design for binders (OPC and MgO) and fillers (spent garnet and sand)
were studied. Peat soil and binders (70:30) were inserted into a PVC pipe with
the diameter of 50 mm and length of 200 mm. Unconfined compressive strength
(UCS) test was conducted to determine the strength gained after 28 days of
curing period. The relationships between the UCS and binder of the specimen
after curing were investigated to determine the effect of binder changes on the
strength of stabilised peat. The results showed that the samples without MgO
could not maintain their form even when the samples were assisted with fillers.
For the OPC:MgO ratio of 50:50, the samples achieved the UCS value of 32.97
kPa. The findings showed the potential contribution of MgO in peat stabilisation,
and the addition of OPC alone is insufficient to stabilise the peat. The pH
values varied from 9.0 to 10.1. Overall, the UCS test results showed that peat
soil stabilisation using MgO and spent garnet improved the strength of
stabilised peat
Keywords: peat
soil, magnesium oxide, unconfined compressive strength test, pH, moisture
content
Abstrak
Ini adalah kajian awal untuk penstabilan tanah gambut
dari Teluk Kerang, Pontian, Johor dengan menggunakan simen Portland biasa (OPC)
dan magnesium oksida (MgO) sebagai pengikat. Garnet dan pasir yang digunakan
sebagai pengisi. Di Malaysia, tanah gambut telah dikenalpasti sebagai salah
satu daripada kumpulan utama tanah yang mempunyai kekuatan ricih yang rendah
dan kebolehmampuan tinggi. Tanah gambut akan menjadi pilihan alternatif untuk
pembangunan masa depan disebabkan kekurangan tanah yang sesuai dan harga mahal.
Kehadiran tanah lembut atau tanah gambut adalah masalah utama dalam pembinaan.
Sifat-sifat tanah gambut yang digunakan dalam kajian ini dianalisis dan
didapati berasid dengan nilai pH 4.15. Mengikut klasifikasi von Post, tanah
gambut dapat diklasifikasikan di antara H3. Dalam kajian ini, pelbagai nisbah
reka bentuk campuran untuk pengikat (OPC dan MgO) dan pengisi (garnet dan
pasir) dikaji. Tanah gambut dan pengikat (70:30) diletakkan di dalam PVC paip
berukuran 50 mm diameter dan 200 mm panjang. Ujian kekuatan mampatan tak
terkurung (UCS) telah dijalankan untuk menentukan kekuatan selepas 28 hari
tempoh pengawetan. Hubungan antara UCS dan pengikat spesimen selepas pengawetan
disiasat untuk menentukan kesan pengikat pada kekuatan gambut yang stabil.
Keputusan menunjukkan bahawa sampel tanpa MgO tidak dapat mengekalkan bentuknya
walaupun dibantu dengan pengisi dan nisbah OPC: MgO 50:50, sampel dapat
mencapai nilai UCS sebanyak 32.97 kPa. Penemuan menunjukkan potensi sumbangan
MgO dalam penstabilan gambut dan apabila penambahan OPC sahaja tidak mencukupi
untuk menstabilkan gambut. Nilai pH berbeza dari 9.0 hingga 10.1. Secara
keseluruhannya, keputusan ujian UCS menunjukkan bahawa penstabilan tanah gambut
menggunakan MgO dan garnet menghasilkan peningkatan kekuatan gambut yang
stabil.
Kata kunci: tanah
gambut, magnesium oksida, kekuatan mampatan tak terkurung, pH, kelembapan
References
1.
Nikookar,
M., Arabani, M., Mirmoa’Zen, S. M. and Pashaki, M. K. (2016). Experimental
evaluation of the strength of peat stabilized with hydrated lime. Periodica
Polytechnica Civil Engineering, 60(4): 491-502.
2.
Wong, L.
S., Hashim, R. and Ali, F. (2013). Improved strength and reduced permeability
of stabilized peat: Focus on application of kaolin as a pozzolanic additive. Construction
and Building Materials, 40: 783-792.
3.
Firoozi,
A. A., Guney Olgun, C., Firoozi, A. A. and Baghini, M. S. (2017). Fundamentals
of soil stabilization. International Journal of Geo-Engineering, 8(1):
26.
4.
Imbabi,
M. S., Carrigan, C. and McKenna, S. (2012). Trends and developments in green
cement and concrete technology. International Journal of Sustainable Built
Environment, 1(2): 194-216.
5.
Walling,
S. A. and Provis, J. L. (2016). Magnesia-based cements : A journey of 150
years, and cements for the future.
6.
ASTM
(2000). Annual book of ASTM standards, section four: Construction. American
Society of Testing Materials, USA.
7.
Landva,
A. O. and Pheeney, P. E. (1980). Peat fabric and structure. Canadian
Geotechnical Journal, 17(3): 416-435.
8.
ASTM D 2974 (2000). Standard test method for moisture, ash,
and organic matter of peat and other organic soils. Annual book of ASTM
Standards, ASTM, Philadelphia, USA.
9.
ASTM D2976-71(2004).
Standard test method for pH of peat materials. ASTM International, Philadelphia, USA.
10.
ASTM D 2166 (2000).
Standard test method for unconfined compressive strength of cohesive soil.
Annual book of ASTM standards, ASTM, Philadelphia, USA.
11.
Wong, L. S., Hashim, R. and Ali, F.
H. (2008). Strength and permeability of stabilized peat soil. Journal
of Applied Sciences, 8(21): 3986-3990.
12.
Saride,
S., Puppala, A. J. and Chikyala, S. R. (2013). Swell-shrink and strength
behaviors of lime and cement stabilized expansive organic clays. Applied
Clay Science, 85(1): 39-45.
13.
Lagerblad,
B. (2005). Carbon dioxide uptake during concrete life cycle – State of the art.
Stockholm.
14.
Unluer, C. and Al-tabbaa,
A. (2014). Cement and concrete research enhancing the carbonation of MgO cement
porous blocks through improved curing conditions. Cement and Concrete
Research, 59: 55-65.
15.
Unluer,
C. and Al-Tabbaa, A. (2013). Impact of hydrated magnesium carbonate additives
on the carbonation of reactive MgO cements. Cement and Concrete Research,
54: 87-97.
16.
Yi, Y.,
Liska, M., Unluer, C. and Al-tabbaa, A. (2013). Carbonating magnesia for soil
stabilization, 905: 899-905.
17.
Wall, N.
A. and Mathews, S. A. (2005). Sustainability of humic acids in the presence of
magnesium oxide. Applied Geochemistry, 20(9): 1704-1713.
18.
Gonçalves,
T., Silva, R. V, Brito, J. De, Fern, J. M. and Esquinas, A. R. (2019).
Hydration of reactive MgO as partial cement replacement and its influence on
the macroperformance of cementitious mortars. Advances in Materials Science
and Engineering, 2019: 1-12.
19.
Dehghanbanadaki,
A., Ahmad, K. and Ali, N. (2013). Influence of natural fillers on shear
strength of cement treated peat. Journal of the Croatian Association of
Civil Engineers, 65(7): 633-640.