Malaysian Journal of Analytical Sciences Vol 24 No 4 (2020): 570 - 577

 

 

 

 

EVALUATION OF PHYSICOCHEMICAL CHARACTERISTICS AND PHYTOCHEMICAL PROPERTIES OF TOMATO (Lycopersicon esculentum L.) DURING DIFFERENT MATURITY STAGES

 

(Penilaian Ciri Fizikokimia dan Sifat Fitokimia Tomato ((Lycopersicon esculentum L.) pada Tahap Kematangan yang Berbeza)

 

Md. Ashikur Rahman1*, Md. Parvez Hasan2, Rakibul Hasan2

 

1Food Safety and Quality Analysis Division, Institute of Food and Radiation Biology,

Bangladesh Atomic Energy Commission, Dhaka, Bangladesh

2Regional agriculture research center,

Bangladesh Agriculture Research Institute, Ishwardi, Pabna, Bangladesh

 

*Corresponding author:  ashikur07038@gmail.com

 

 

Received: 8 June 2020; Accepted: 5 July 2020; Published: 11 August 2020

 

 

Abstract

Tomato is an indispensable constituent of the daily food consumed in Bangladesh. The present study evaluated the physicochemical characteristics and phytochemicals present in tomato during different maturity stages, showing that pH and total soluble solids gradually increased with the decreased titratable acidity during different maturity stages of tomato. Chlorophyll content also decreased with the maturation of the tomato. Also, the anti-nutritional factors, tannin, phytate, and cyanogenic glycoside as well as antioxidants, such as vitamin C, were quantified, showing the highest amount of tannin, (2.61 ± 0.02 mg/100 g), phytate (4.28 ± 0.02 mg/100 g), and cyanogenic glycoside (7.81 ± 0.02 mg/100 g) in the green mature (unripe) stage, with the lowest values (1.16 ± 0.02 mg/100 g, 3.08 ± 0.01 mg/100 and 5.91 ± 0.02 mg/100 g, respectively) in the red (ripen) stage. In contrast, the maximum amount of vitamin C (25.07 ± 0.05 mg/100 g) was found in the red (ripen) stage, with the lowest amount (22.15± 0.22 mg/100 g) in the green mature stage. Overconsumption, that is, more than the daily recommended intake, of tomatoes may harm health but the concentration of anti-nutritional factors present in tomato was found to below toxic levels. Furthermore, vitamin C is a positive indicator of health and was in a high concentration in all maturity stages of tomato. In conclusion, this study revealed that the red ripened tomato is the best for human consumption compared to those green-yellow and green mature stages in terms of the physicochemical characteristics and phytochemical properties.

 

Keywords:  tomato, maturity, tannin, phytate, cyanogenic glycoside

 

Abstrak

Tomato merupakan bahan utama yang diguna secara harian di Bangladesh. Kajian ini menilai ciri fiziko-kimia dan fitokimia yang hadir di dalam tomato semasa peringkat kematangan yang berbeza, menunjukkan nilai pH dan jumlah pepejal terlarut meningkat dengan pengurangan keasidan yang boleh dititrat semasa peringkat kematangan tomato yang berbeza. Kandungan klorofil juga berkurangan pada kematangan tomato. Juga, faktor anti-nutrisi, tannin, fitat, dan glikosida sinogenik bersama antioksidan, seperti vitamic C, telah dikuantifikasi, menunjukkan kandungan yang tinggi bagi tannin (2.61 ± 0.02 mg/100 g), fitat (4.28 ± 0.02 mg/100 g), dan glikosida sinogenik (7.81 ± 0.02 mg/100 g) pada peringkat belum matang (hijau) dengan nilai paling rendah telah ditemui (masing-masing 1.16 ± 0.02 mg/100 g, 3.08 ± 0.01 mg/100 dan 5.91 ± 0.02 mg/100 g) pada peringkat matang (merah), Sebaliknya, jumlah maksimum vitamin C (25.07 ± 0.05 mg/100 g) dijumpai pada peringkat matang (merah) dengan kandungan paling rendah (22.15± 0.22 mg/100 g) pada peringkat belum matang, hijau. Pengambilan secara lebihan melebihi cadangan harian, tomato mungkin membahayakan kesihatan tetapi kepekatan factor anti-nutrisi hadir di dalam tomato dijumpai lebih rendah dari aras toksik. Selanjutnya, vitamin C ialah indikator positif kesihatan dan ia mempunyai kepekatan yang tinggi pada semua peringkat kematangan tomato. Kesimpulan, kajian ini membuktikan bahawa tomato pada kematangan merah adalah terbaik bagi pengambilan oleh manusia berbanding kematangan hijai kekuningan dan hijau dari aspek ciri fizikokimia dan sifat fitokimia.

 

Kata kunci:  tomato, kematangan, tannin, fitat, glikosida sinogenik

 

References

1.      Beckles, D.M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63: 129-140.

2.      FAOSTAT (2017). Access from http://faostat.fao.org/site/339/default.aspx [Accessed June 10, 2018].

3.      Bangladesh Bureau of Statistics (2019). Yearbook of Agricultural Statistics-2017, 29th Series: access from http://www.bbs.gov.bd/bbs report. [Access online 17 April 2018].

4.      Giovanelli, G. and Paradise, A., (2002). Stability of dried and intermediate moisture tomato pulp during storage. Journal of Agriculture and Food Chemistry, 50: 7277-7281.

5.      Willcox, J. K., Catignani, G. L. and Lazarus, S. (2003). Tomatoes and cardiovascular health. Critical Review in Food Science and Nutrition, 43: 1-18.

6.      Eitenmiller, R. R., Ye, L. and Landen, W. O. (2008). Vitamin analysis for the health and food sciences (2nd edition). CRC Press, Taylor & Francis Group, UK:  pp. 307.

7.      Ilahy R., Hdider C., Lenucci M.S., Tlili I. and Dalessandro G. (2011). Antioxidant activity and bioactive compound changes during fruit ripening of high lycopene tomato cultivars. Journal of Food Composition and Analysis, 24: 588-595.

8.      Duma M., Alsin I., Dubova L. and Erdberga I. (2015). Chemical composition of tomatoes depending on the stage of ripening. Cheminė Technologija, 1: 24-28.

9.      Leonardi C., Ambrosino P., Esposito F. and Fogliano V. (2000). Anti-oxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. Journal of Agricultural and Food Chemistry, 48: 4723-4727.

10.   Moneruzzaman K. M. Hossain A. B. M. S., Sain W. and Saifuddin N. (2008). Effect of stages of maturity and ripening conditions on the biochemical characteristics of tomato. American Journal of Biochemistry and Biotechnology, 4: 329-335.

11.   Hendek, E. M. and Bektaş, M. (2018). Enhancement of bioavailable micronutrients and reduction of antinutrients in foods with some processes. Food Health, 4(3): 159–165.

12.   Kumar, V., Sinha, A. K. and Makkar, H. P. S. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120: 945–959.

13.   Mueller I. (2001). Analysis of hydrolyzable tannins. Animal Feed Science and Technology, 91: 3-20.

14.   Srivastava, R. P., and Sanjeev, K. (2003). Fruit and vegetable preservation principles and practices: Important methods for the analysis of fruits and vegetables and their products (3rd edition). International Book Distribution Co. Lucknow:  pp. 354-359.

15.   Navez B., Letard M., Graselly D., Jost J. (1999): Les crit.resde qualit. de la tomate Infos Ctifl, 155: 41-47.

16.   Nielsen S. (2003): Food analysis. (3rd edition) Kluwer Academic, New York: pp. 557.

17.   Rahman Khan, M. M., Rahman M. M., Islam M. S. and Begum S. A. (2006). A simple UV-spectrophotometric method for the determination of vitamin C content in various fruits and vegetables at the Sylhet area in Bangladesh. Journal of Biological Sciences, 6: 388-392.

18.   Lucas, G. M. and Markakas (1975). Phytic acid and other phosphorus compounds of bean (Phaseolus vulgaris). Journal of Agriculture Educational Chemistry, 23: 13-15.

19.   Onwuka, G. (2005). Food Analysis and Instrumentation. Naphohla Prints. (3rd edition), A division of HG support Nigeria Ltd.: pp. 133-161.

20.   Jaffe, C.S. (2003). Analytical chemistry of food. Blackie Academic and Professional, New York: pp. 200.

21.   Fagbohoun, O. and Kiki, D. (1999) Aper.u sur les principales vari.t.s de tomate locale cultiv.es dans le sud du Benin. Bulletin de la Recherche Agronomique du Benin, 24: 10-21.

22.   Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, 2007 :1-52.

23.   Aoun, A. B., Lechiheb, B., Benyahya, L. and Ferchichi, A. (2013). Evaluation of fruit quality traits of traditional varieties of tomato (Solanum lycopersicum) grown in Tunisia. African Journal of Food Science, 7(10): 350-354.

24.   Malundo, M. M., Shewfelt, R.L. and Scott, J.W. (1995). Flavor quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels. Postharvest Biology and Technology, 6:103-110.

25.   Murcia, M. A., López-Ayerra, B., Martinez-Tomé, M. and Garcia-Carmona, F. (2000). Effect of industrial processing on chlorophyll content of broccoli. Journal of the Science of Food and Agriculture, 80: 1447-1451.

26.   Schiavone, A., Guo, K. and Tassone, S. (2008). Effect of a natural extract of chestnut wood on digestibility, performance traits, and nitrogen balance. Sciences, 87(3): 521–527.

27.   Felix, J. P. and Mello, D. (2000). Farm animal metabolism and nutrition. CABI, United Kingdom: pp. 163.

28.   Selvam, R. (2002). Calcium oxalate stone disease: Role of lipid peroxidation and antioxidants. Urological Research, 30(1): 35-47.

29.   Golden, M. (2009). Nutrient requirements of moderately malnourished populations of children. Food and Nutrition Bulletin, 30: 267-342.

30.   Masum-Akond, A. S. M. G., Crawford, H., Berthold, J., Talukder, Z. I. and Hossain, K. (2011). Minerals (Zn, Fe, Ca, and Mg) and antinutrient (Phytic acid) constituents in common bean. American Journal Food Technology, 6(3): 235-243.

31.   Kyriazakis, I. and Whittenmore, C.T. (2006). Whittemore’s science and practice of pig production. Oxford: Wiley- Blackwell, United Kingdom: pp. 103.

32.   Osada, K. and Ogino, Y. (2004). Effect of dietary apple polyphenol on metabolic disorder of lipid in rats given oxidized cholesterol. Proceeding Japan Conference Biochemistry Lipid, 39: 317-320.

33.   Ilahy, R., Siddiqui, M. W., Tlili, I., Piro, G., Lenucci, M. S. and Hdider, C. (2016). Functional quality and color attributes of two high-lycopene tomato breeding lines grown under greenhouse conditions. Turkish Journal of Agriculture Food Science and Technology, 4(5): 365-373.

34.   Dumas, Y., Dadomo, M., Di Lucca, G. and Grolier, P. (2003). Effects of environmental factors and agricultural techniques on the antioxidant content of tomatoes. Journal of the Science of Food and Agriculture, 83: 369-382.

35.   Gautier, H., Diakou-Verdin, V., Benard, C., Reich, M., Buret, M., Bourgaud, F., Poessel, J. L., Caris-Veyrat, C. and Genard, M. (2008). How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? Journal of Agricultural and Food Chemistry, 56: 1241-1250.