Malaysian
Journal of Analytical Sciences Vol 24 No 4
(2020): 558 - 569
REAL-TIME MONITORING OF FOOD
FRESHNESS USING DELPHINIDIN-BASED VISUAL INDICATOR
(Pemantauan Kesegaran Masa
Nyata Makanan dengan Menggunakan Indikator Visual Berasaskan Delphinidin)
Nurdiyana Husin1*, Mohd. Zulkhairi Abdul Rahim2,
Mohd. Azizan Mohd. Noor1, Ismail Fitry Mohammad Rashedi3, Nazatulshima
Hassan2
1Section of
Bioengineering Technology
2Section of Technical
Foundation
Universiti Kuala Lumpur Malaysian Institute
of Chemical & Bioengineering Technology,
Lot 1988, Bandar Vendor, 78000 Alor Gajah,
Malacca, Malaysia
3Faculty of Science and
Food Technology,
Universiti Putra Malaysia, Serdang, 43400
Seri Kembangan, Selangor, Malaysia
*Corresponding author: mohd.zulkhairi@unikl.edu.my
Received: 20 November 2019; Accepted: 18 June 2020; Published: 11 August 2020
Abstract
Nowadays, there is an increasing demand from consumers
for better quality and hygienic food products, particularly for vulnerable
foods that are easily infected by microorganisms. At present, consumers only
depend on the expiry date, but this information does not always portray the
real indication of the actual progress of food spoilage. The use of a
colorimetric freshness indicator can provide direct and real-time visual
quality information, but most of the previous works focused on synthetic
colours. In this project, a natural colour (anthocyanin-delphinidin derivative)
from Clitoria ternatea (butterfly pea) flower was extracted using an
ultrasonic processor, followed by immobilisation on indicator strips, and
finally applied as a freshness indicator for the qualitative detection of beef
freshness. The extracted colour changed obviously at different pH values, from
dark blue (pH 5.93) to green (pH 8) and yellow at pH 12. The delphinidin-based
visual indicator was also able to detect the spoilage of beef at hour 18 (pH
6.76 ± 0.29 and point of rejection at 25.67 ΔE*) at room temperature (25 ±
1 °C) and on day 6 (pH 6.71 ± 0.05 and point of rejection at 27.09
ΔE*) in chiller storage (4 ± 1 °C). The tested visual indicators at room
and chiller temperature responded to the changes of pH as volatile compounds
were gradually produced from the spoiled product. The colour of the indicators
subsequently changed from dark blue to green and was easily visible to the
naked eye. This study provides a foundation for developing a new visual
indicator for monitoring real-time beef freshness and may also be used for
intelligent packaging.
Keywords: beef freshness, butterfly pea,
visual indicator, intelligent packaging
Abstrak
Kebelakangan ini, keinginan pengguna terhadap produk
makanan yang bersih dan berkualiti semakin meningkat, terutama bagi produk
makanan yang mudah dijangkiti mikroorganisma. Sehingga kini, pengguna hanya
bergantung kepada tarikh luput untuk menentukan kualiti produk makanan, yang
mana ia tidak menggambarkan keadaan sebenar makanan tersebut. Penggunaan
indikator visual kesegaran berdasarkan warna akan membolehkan kesegaran makanan
dapat dikenal pasti secara terus, akan tetapi kebanyakan kajian tersebut adalah
lebih kepada menggunakan bahan pewarna sintetik. Dalam kajian ini, pewarna
natural diekstrak daripada bunga telang dengan menggunakan kaedah ultrasonik,
diserap ke atas kertas indikator, dan akhir sekali digunakan sebagai pengukur
kesegaran bagi mengukur tahap kesegaran daging. Hasil kajian menunjukkan
berlaku perubahan warna yang ketara pada pH yang berbeza; bermula daripada
warna biru gelap pada pH 5.93 dan bertukar kepada warna hijau pada pH 8–9 dan
berubah ke warna kuning pada pH 12. Pada suhu bilik
(25 ± 1 °C), indikator visual berjaya mengesan kerosakan daging pada
jam ke 18, pada pH 6.76 ± 0.29 dan titik penolakan pada 25.67 ΔE*.
Manakala pada suhu penyejuk (4 ± 1 °C), kerosakan daging dapat dikesan pada
hari ke 6, pada pH 6.71 ± 0.05 dan pada titik penolakan 27.09 ΔE*.
Indikator visual yang diuji pada suhu bilik dan penyejuk telah menunjukkan
tindak balas terhadap perubahan pH yang disebabkan oleh gas yang terhasil
daripada daging yang rosak. Warna indikator visual kemudiannya telah bertukar
daripada biru gelap ke hijau dan ia mudah dilihat dengan mata kasar. Kajian ini
menyediakan asas kepada pembangunan indikator visual bagi mengukur kesegaran
daging secara terus dan boleh juga digunakan untuk kegunaan pembungkusan pintar.
Kata kunci:
kesegaran daging, bunga telang, visual
indikator, pembungkusan pintar
References
1. Rukchon, C., Nopwinyuwong, A. and Trevanich, S. (2014).
Development of a food spoilage indicator for monitoring freshness of skinless
chicken breast. Talanta, 130: 547-554.
2. Mohebi, E. and Marquez, L. (2015). Intelligent packaging
in meat industry: An overview of existing solutions. Journal of Food Science
Technology, 52: 3947-3964.
3. Kim, H. J., Kim, D., Kim, H. J., Song, S. O., Song, Y.
H. and Jang, A. (2018). Evaluation of the microbiological status of raw beef in
Korea: Considering the suitability of aerobic plate count guidelines. Korean
Journal Food Science Animal Resource, 38(1): 43-51.
4. Meat & Livestock Australia (2011). Meat standards
Australia beef information kit. Access from https://www.mla.com.au/globalassets/mla-corporate/marketing-beef-and-lamb/msa_tt_beefinfokit_jul13_lr.pdf
[Access online on 9 October 2017].
5. Kuswandi, B., Jember, U., Jayus, J. and Jember, U.
(2015). Simple and low-cost on-package sticker sensor based on litmus paper for
real-time monitoring of beef freshness. Journal of Mathematical and Fundamental
Sciences, 47: 236-251.
6. Dave, D. and Ghaly, A. E. (2011). Meat spoilage
mechanisms and preservation techniques: A critical review. American Journal
of Agricultural and Biological Sciences, 6(4): 486-510.
7. Liu, H., Saito, Y., Dimas, F. A. R., Kondo, N., Yang,
X. and Han, D. (2019). Rapid evaluation of quality deterioration and freshness
of beef during low temperature storage using three-dimensional fluorescence spectroscopy.
Food Chemistry, 287: 369-374.
8. Kuswandi, B. and Nurfawaidi, A. (2017). On-package
dual sensors label based on pH indicators for real-time monitoring of beef
freshness. Food Control, 82: 91-100.
9. Kuswandi, B., Anggi, R., Aminah, A., Lee, Y. H. and
Musa, A. (2012). A novel colorimetric food package label for fish spoilage
based on polyaniline film. Food Control, 25: 184-189.
10. Kuswandi, B., Chrysnanda, M., Jayus, A. A and Lee, Y.
H. (2013). Real time on-package freshness indicator for guavas packaging. Food
Measure, 7: 29-39.
11. Pacquit, A., Frisby, J., Diamond, D., Lau, K. T.,
Farrell, A., Quilty, B. and Diamond, D. (2007). Development of a smart
packaging for the monitoring of fish spoilage. Food Chemistry, 102: 466-470.
12. Mohd Zulkhairi, A. R., Nurdiyana, H., Mohd Azizan, M.
N., Zaida Rahayu, Y. and Ismail-Fitry, M. R (2020). Screening of natural
colours from various natural resources as potential reusable visual indicators
for monitoring food freshness. Malaysian Journal of Analytical Sciences,
24(2): 288-299.
13. Sharma, D. (2014). Understanding biocolour- a review. International
Journal of Scientific & Technology Research, 3(1): 294-211.
14. Pahune, B. (2013). Antimicrobial activity of Clitoria
Ternatea L. flower extract and use as a natural indicator in acid base
titration. Journal of Natural Product and Plant Resource, 3: 48-51.
15. Tantituvanont, A., Werawatganone, P., Jiamchaisri, P.
and Manopakdee, K. (2008). Preparation and stability of butterfly pea color
extract loaded in microparticles prepared by spray drying. Thai Journal of
Pharmaceutical Sciences, 32: 59-69.
16. Wongs - Aree, C., Giusti, M. M. and Schwartz, S. J. (2016).
Anthocyanins derived only from delphinidin in the blue petals of Clitoria
ternatea. Acta Horticulturae, 712: 437-442.
17. Dudnyk, I., Jane, E. R., Joanne, V. J. and Stellacci,
F. (2018). Edible sensors for meat and seafood freshness. Sensors and
Actuators B, 259: 1108-1112.
18. Saptarini, N. M., Suryasaputra, D. and Nurmalia, H.
(2015). Application of butterfly pea (Clitoria ternatea Linn) extract as
an indicator of acid-base titration. Journal of Chemical and Pharmaceutical Research,
7: 275-280.
19. Yoshida, C. M. P., Maciel, V. B. V., Mendonça, M. E.
D. and Franco, T. T. (2014). Chitosan biobased and intelligent films:
Monitoring pH variations. LWT - Food Sci Technology, 55: 83-89.
20. Anuar, N., Mohd Adnan, A.
F., Saat, N., Aziz, N., and Mat Taha, R. (2013). Optimization of extraction
parameters by using response surface methodology, purification, and
identification of anthocyanin pigments in Melastoma malabathricum fruit.
The Scientific World Journal, 2013: 810547.
21. Rabeta, M. S. and Nabil, Z. A. (2013). Total phenolic
compounds and scavenging activity in Clitoria ternatea and Vitex
negundo linn. International Food Research Journal, 20: 495-500.
22. Mishra, P. K., Singh, P. and Gupta, K. K. (2012).
Extraction of natural dye from Dhalia Variabilis using ultrasound. Chem
Engineering, 37: 1-18.
23. Kungsuwan, K., Singh, K., Phetkao, S. and Utama-ang,
N. (2014). Effects of pH and anthocyanin concentration on color and antioxidant
activity of Clitoria ternatea extract. Food and Applied Bioscience
Journal, 2(1): 31-46.
24. Shukla, V., Gurunathan, K. and Mangalathu, R. V.
(2015). Development of on-package indicator sensor for real-time monitoring of
buffalo meat quality during refrigeration storage. Food Analytical Methods, 8:
1591-1597.
25. Kamat, S. S., Khairnar, B. S. and Patil, V. D. (2016).
Investigation on new natural colour - acid violet from Clitoria ternatea
Linn. Journal of Academia and Industrial Research, 5(1): 14-16.
26. Mohammad, R. and Ahmad, M. (2019). Sol-gel/chitosan
hybrid thin film immobilised with curcumin as pH indicator for pH sensor
fabrication. Malaysian Journal of Analytical Sciences, 23(2): 204-211.
27. Realini, C. E. and Marcos, B. (2014). Active and
intelligent packaging systems for a modern society. Meat Science, 98: 404-419.
28. Olleveant, N.A. (1999). Tukey multiple comparison test.
Journal of Clinical Nursing, 8: 299-304.
29. Maggiolino, A., Lorenzo, J. M., Marino, R., Malva, A.
D., Centoducati, P. and Palo, P. D. (2019). Foal meat volatile compounds:
Effect of vacuum ageing on semimembranosus muscle. Journal of Science Food
Agriculture, 99(4): 1660-1667.