Malaysian Journal of Analytical Sciences Vol 24 No 4 (2020): 558 - 569

 

 

 

 

REAL-TIME MONITORING OF FOOD FRESHNESS USING DELPHINIDIN-BASED VISUAL INDICATOR

 

(Pemantauan Kesegaran Masa Nyata Makanan dengan Menggunakan Indikator Visual Berasaskan Delphinidin)

 

Nurdiyana Husin1*, Mohd. Zulkhairi Abdul Rahim2, Mohd. Azizan Mohd. Noor1, Ismail Fitry Mohammad Rashedi3, Nazatulshima Hassan2

 

1Section of Bioengineering Technology

2Section of Technical Foundation

Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology,

Lot 1988, Bandar Vendor, 78000 Alor Gajah, Malacca, Malaysia

3Faculty of Science and Food Technology,

Universiti Putra Malaysia, Serdang, 43400 Seri Kembangan, Selangor, Malaysia

 

*Corresponding author:  mohd.zulkhairi@unikl.edu.my

 

 

Received: 20 November 2019; Accepted: 18 June 2020; Published: 11 August 2020

 

 

Abstract

Nowadays, there is an increasing demand from consumers for better quality and hygienic food products, particularly for vulnerable foods that are easily infected by microorganisms. At present, consumers only depend on the expiry date, but this information does not always portray the real indication of the actual progress of food spoilage. The use of a colorimetric freshness indicator can provide direct and real-time visual quality information, but most of the previous works focused on synthetic colours. In this project, a natural colour (anthocyanin-delphinidin derivative) from Clitoria ternatea (butterfly pea) flower was extracted using an ultrasonic processor, followed by immobilisation on indicator strips, and finally applied as a freshness indicator for the qualitative detection of beef freshness. The extracted colour changed obviously at different pH values, from dark blue (pH 5.93) to green (pH 8) and yellow at pH 12. The delphinidin-based visual indicator was also able to detect the spoilage of beef at hour 18 (pH 6.76 ± 0.29 and point of rejection at 25.67 ΔE*) at room temperature (25 ± 1 °C) and on day 6 (pH 6.71 ± 0.05 and point of rejection at 27.09 ΔE*) in chiller storage (4 ± 1 °C). The tested visual indicators at room and chiller temperature responded to the changes of pH as volatile compounds were gradually produced from the spoiled product. The colour of the indicators subsequently changed from dark blue to green and was easily visible to the naked eye. This study provides a foundation for developing a new visual indicator for monitoring real-time beef freshness and may also be used for intelligent packaging.

 

Keywords:  beef freshness, butterfly pea, visual indicator, intelligent packaging

 

Abstrak

Kebelakangan ini, keinginan pengguna terhadap produk makanan yang bersih dan berkualiti semakin meningkat, terutama bagi produk makanan yang mudah dijangkiti mikroorganisma. Sehingga kini, pengguna hanya bergantung kepada tarikh luput untuk menentukan kualiti produk makanan, yang mana ia tidak menggambarkan keadaan sebenar makanan tersebut. Penggunaan indikator visual kesegaran berdasarkan warna akan membolehkan kesegaran makanan dapat dikenal pasti secara terus, akan tetapi kebanyakan kajian tersebut adalah lebih kepada menggunakan bahan pewarna sintetik. Dalam kajian ini, pewarna natural diekstrak daripada bunga telang dengan menggunakan kaedah ultrasonik, diserap ke atas kertas indikator, dan akhir sekali digunakan sebagai pengukur kesegaran bagi mengukur tahap kesegaran daging. Hasil kajian menunjukkan berlaku perubahan warna yang ketara pada pH yang berbeza; bermula daripada warna biru gelap pada pH 5.93 dan bertukar kepada warna hijau pada pH 8–9 dan berubah ke warna kuning pada pH 12. Pada suhu bilik (25 ± 1 °C), indikator visual berjaya mengesan kerosakan daging pada jam ke 18, pada pH 6.76 ± 0.29 dan titik penolakan pada 25.67 ΔE*. Manakala pada suhu penyejuk (4 ± 1 °C), kerosakan daging dapat dikesan pada hari ke 6, pada pH 6.71 ± 0.05 dan pada titik penolakan 27.09 ΔE*. Indikator visual yang diuji pada suhu bilik dan penyejuk telah menunjukkan tindak balas terhadap perubahan pH yang disebabkan oleh gas yang terhasil daripada daging yang rosak. Warna indikator visual kemudiannya telah bertukar daripada biru gelap ke hijau dan ia mudah dilihat dengan mata kasar. Kajian ini menyediakan asas kepada pembangunan indikator visual bagi mengukur kesegaran daging secara terus dan boleh juga digunakan untuk kegunaan pembungkusan pintar.

 

Kata kunci:  kesegaran daging, bunga telang, visual indikator, pembungkusan pintar

 

References

1.      Rukchon, C., Nopwinyuwong, A. and Trevanich, S. (2014). Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta, 130: 547-554.

2.      Mohebi, E. and Marquez, L. (2015). Intelligent packaging in meat industry: An overview of existing solutions. Journal of Food Science Technology, 52: 3947-3964.

3.      Kim, H. J., Kim, D., Kim, H. J., Song, S. O., Song, Y. H. and Jang, A. (2018). Evaluation of the microbiological status of raw beef in Korea: Considering the suitability of aerobic plate count guidelines. Korean Journal Food Science Animal Resource, 38(1): 43-51.

4.      Meat & Livestock Australia (2011). Meat standards Australia beef information kit. Access from https://www.mla.com.au/globalassets/mla-corporate/marketing-beef-and-lamb/msa_tt_beefinfokit_jul13_lr.pdf [Access online on 9 October 2017].

5.      Kuswandi, B., Jember, U., Jayus, J. and Jember, U. (2015). Simple and low-cost on-package sticker sensor based on litmus paper for real-time monitoring of beef freshness. Journal of Mathematical and Fundamental Sciences, 47: 236-251.

6.      Dave, D. and Ghaly, A. E. (2011). Meat spoilage mechanisms and preservation techniques: A critical review. American Journal of Agricultural and Biological Sciences, 6(4): 486-510.

7.      Liu, H., Saito, Y., Dimas, F. A. R., Kondo, N., Yang, X. and Han, D. (2019). Rapid evaluation of quality deterioration and freshness of beef during low temperature storage using three-dimensional fluorescence spectroscopy. Food Chemistry, 287: 369-374.            

8.      Kuswandi, B. and Nurfawaidi, A. (2017). On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control, 82: 91-100.

9.      Kuswandi, B., Anggi, R., Aminah, A., Lee, Y. H. and Musa, A. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control, 25: 184-189.

10.   Kuswandi, B., Chrysnanda, M., Jayus, A. A and Lee, Y. H. (2013). Real time on-package freshness indicator for guavas packaging. Food Measure, 7: 29-39.

11.   Pacquit, A., Frisby, J., Diamond, D., Lau, K. T., Farrell, A., Quilty, B. and Diamond, D. (2007). Development of a smart packaging for the monitoring of fish spoilage. Food Chemistry, 102: 466-470.

12.   Mohd Zulkhairi, A. R., Nurdiyana, H., Mohd Azizan, M. N., Zaida Rahayu, Y. and Ismail-Fitry, M. R (2020). Screening of natural colours from various natural resources as potential reusable visual indicators for monitoring food freshness. Malaysian Journal of Analytical Sciences, 24(2): 288-299.

13.   Sharma, D. (2014). Understanding biocolour- a review. International Journal of Scientific & Technology Research, 3(1): 294-211.

14.   Pahune, B. (2013). Antimicrobial activity of Clitoria Ternatea L. flower extract and use as a natural indicator in acid base titration. Journal of Natural Product and Plant Resource, 3: 48-51.

15.   Tantituvanont, A., Werawatganone, P., Jiamchaisri, P. and Manopakdee, K. (2008). Preparation and stability of butterfly pea color extract loaded in microparticles prepared by spray drying. Thai Journal of Pharmaceutical Sciences, 32: 59-69.

16.   Wongs - Aree, C., Giusti, M. M. and Schwartz, S. J. (2016). Anthocyanins derived only from delphinidin in the blue petals of Clitoria ternatea. Acta Horticulturae, 712: 437-442.

17.   Dudnyk, I., Jane, E. R., Joanne, V. J. and Stellacci, F. (2018). Edible sensors for meat and seafood freshness. Sensors and Actuators B, 259: 1108-1112.

18.   Saptarini, N. M., Suryasaputra, D. and Nurmalia, H. (2015). Application of butterfly pea (Clitoria ternatea Linn) extract as an indicator of acid-base titration. Journal of Chemical and Pharmaceutical Research, 7: 275-280.

19.   Yoshida, C. M. P., Maciel, V. B. V., Mendonça, M. E. D. and Franco, T. T. (2014). Chitosan biobased and intelligent films: Monitoring pH variations. LWT - Food Sci Technology, 55: 83-89.

20.   Anuar, N., Mohd Adnan, A. F., Saat, N., Aziz, N., and Mat Taha, R. (2013). Optimization of extraction parameters by using response surface methodology, purification, and identification of anthocyanin pigments in Melastoma malabathricum fruit. The Scientific World Journal, 2013: 810547.

21.   Rabeta, M. S. and Nabil, Z. A. (2013). Total phenolic compounds and scavenging activity in Clitoria ternatea and Vitex negundo linn. International Food Research Journal, 20: 495-500.

22.   Mishra, P. K., Singh, P. and Gupta, K. K. (2012). Extraction of natural dye from Dhalia Variabilis using ultrasound. Chem Engineering, 37: 1-18.

23.   Kungsuwan, K., Singh, K., Phetkao, S. and Utama-ang, N. (2014). Effects of pH and anthocyanin concentration on color and antioxidant activity of Clitoria ternatea extract. Food and Applied Bioscience Journal, 2(1): 31-46.

24.   Shukla, V., Gurunathan, K. and Mangalathu, R. V. (2015). Development of on-package indicator sensor for real-time monitoring of buffalo meat quality during refrigeration storage. Food Analytical Methods, 8: 1591-1597.

25.   Kamat, S. S., Khairnar, B. S. and Patil, V. D. (2016). Investigation on new natural colour - acid violet from Clitoria ternatea Linn. Journal of Academia and Industrial Research, 5(1): 14-16.

26.   Mohammad, R. and Ahmad, M. (2019). Sol-gel/chitosan hybrid thin film immobilised with curcumin as pH indicator for pH sensor fabrication. Malaysian Journal of Analytical Sciences, 23(2): 204-211.

27.   Realini, C. E. and Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Science, 98: 404-419.

28.   Olleveant, N.A. (1999). Tukey multiple comparison test. Journal of Clinical Nursing, 8: 299-304.

29.   Maggiolino, A., Lorenzo, J. M., Marino, R., Malva, A. D., Centoducati, P. and Palo, P. D. (2019). Foal meat volatile compounds: Effect of vacuum ageing on semimembranosus muscle. Journal of Science Food Agriculture, 99(4): 1660-1667.