Malaysian Journal of Analytical Sciences Vol 24 No 3 (2020): 449 - 463

 

 

 

 

STANDARIZATION BASED ON CHEMICAL MARKERS OF Moringa oleifera HERBAL PRODUCTS USING BIOAUTOGRAPHY ASSAY, THIN LAYER CHROMATOGRAPHY AND HIGH PERFORMANCE LIQUID CHROMATOGRAPHY-DIODE ARRAY DETECTOR

 

(Piawaian Berdasarkan Penanda Kimia bagi Produk Herba Moringa oleifera Menggunakan Ujian Bioautografi, Kromatografi Lapisan Nipis dan Kromatografi Cecair Berprestasi Tinggi-Pengesan Susunan Diod)

 

Erick Sierra-Campos1*, Mónica A. Valdez-Solana1, Claudia I. Avitia-Domínguez2, Alfredo Téllez-Valencia2, Jorge A. Meza-Velázquez1, Miguel Aguilera-Ortiz1, Adelma Escobar-Ramírez3

 

1Facultad de Ciencias Químicas GP,

Universidad Juárez del Estado de Durango,  Av. Artículo 123 S/N Fracc. Filadelfia. Gómez Palacio, Durango. México

2Facultad de Medicina y Nutrición,

 Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, 34000 Durango. México

3División Académica de Ciencias Básicas,

Universidad Juárez Autónoma de Tabasco,  Av. Universidad S/N, Zona de la Cultura, Col. Magisterial, Vhsa, Centro, Tabasco, México

 

*Corresponding author:  ericksier@ujed.mx

 

 

Received: 29 December 2019; Accepted: 25 April 2020; Published:  9 June 2020

 

 

Abstract

The present study investigated the variation of phytochemical composition, antioxidant activity and chemometric thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) fingerprinting profiles of five Moringa oleifera herbal products. TLC and HPLC along with the PCA and K-mean can adequately discriminate different herbal products. The content of total bioactive compounds of the samples were ranged from 591.5 to 966.1 mg/100 g dried weight. The total antioxidant activity of M. oleifera samples was in the following order: Mas lait > De Font Quer > Akuanandi > Infusionate > Terbal.  Wavelength at 352 nm, 75 components were detected in all herbal products; among these, 10 potential biomarkers with higher contents enabled differentiation between each sample and foreign organic matter. HPLC-DAD analysis of the extracts showed a decline in the quality of components in the five commercial products.  Thus, this study presents the TLC and HPLC profiles of the Mexican M. oleifera extracts that may serve as a reference for the proper identification, standardization and quality control of this plant. These methods can be used for routine quality control of herbal products and formulations containing this medicinal plant.

 

Keywords:  Moringa oleifera leaves, chemical markers

 

 

Abstrak

Kajian ini menyiasat variasi komposisi fitokimia, aktiviti antioksidan dan kemometrik kromatografi lapisan nipis (TLC) dan kromatografi cecair berprestasi tinggi (HPLC) bagi profil pencapjarian lima produk herba berasaskan Moringa oleifera. TLC dan HPLC bersama PCA dan K-min boleh membezalayan secara tepat bagi produk berbeza. Jumlah kandungan sebatian bioaktif bagi sampel berada di dalam julat 591.5 to 966.1 mg/100 g berat kering. Jumlah aktiviti antioksidan bagi sampel M. oleifera seperti tertib berikut: Mas lait > De Font Quer > Akuanandi > Infusionate > Terbal. Para panjang gelombang 352 nm, 75 komponen ditemui dalam semua produk herba; antaranya 10 potensi penanda bio dengan kadungannya yang tinggi membantu membezakan setiap sampel dengan jirim organik asing. Analisis HPLC-DAD terhadap ekstrak menunjukkan penurunan dalam kualiti komponen di dalam lima produk komersial. Kajian ini membentangkan profil TLC dan HPLC bagi ekstrak M. oleifera tulen dari Mexico yang boleh digunakan sebagai rujukan bagi tujuan pengenalpastian, paiwaian dan kawalan kualiti tumbuhan ini. Keadah ini boleh digunakan bagi rutin kawalan kualiti produk herba dan formulasi yang mengandungi tumbuhan perubatan ini.

 

Kata kunci:  daun Moringa oleifera, penanda kimia

 

References

1.       World Health Organization (2008). Herbal medicine research and global health: an ethical analysis access from https://www.who.int/bulletin/volumes/86/8/07-042820/en/ [Date access April 2020].

2.       Zhang, J., Onakpoya, I. J., Posadzki, P. and Eddouks, M. (2015). The safety of herbal medicine: From prejudice to evidence. Evidence-Based Complementary and Alternative Medicine, 2015: 1-3.

3.       Cimpoiu, C. (2006). Analysis of some natural antioxidants by thin-layer chromatography and high performance thin-layer chromatography. Journal of Liquid Chromatography and Related Technologies, 29: 1125-1142.

4.       Abd Rani, N.Z., Husain, K. and Kumolosasi, E. (2018). Moringa genus: A review of phytochemistry and pharmacology. Frontiers in Pharmacology. 2018(9: 108.

5.       Leone, A., Fiorillo, G., Criscuoli, F., Ravasenghi, S., Santagostini, L., Fico, G., Spadafranca A., Battezzati, A., Schiraldi, A., Pozzi, F., di Lello, S., Filippini, S. and Bertoli S. (2015). Nutritional characterization and phenolic profiling of moringa oleifera leaves grown in Chad, Sahrawi refugee camps, and Haiti. International Journal of Molecular Sciences, 16(8): 18923-18937.

6.       Srirama, R., Kumar, J. U. S., Seethapathy, G. S., Newmaster, S. G., Ragupathy, S., Ganeshaiah, K. N., Uma, S. and Gudasalami, R. (2017). Species adulteration in the herbal trade: Causes, consequences and mitigation. Drug Safety, 40(8): 651-661.

7.       Ichim, M. C. (2019). The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. Frontiers in Pharmacology, 10: 1227.

8.       Saslis-Lagoudakis, C. H., Bruun-Lund, S., Iwanycki, N. E., Seberg, O., Petersen, G., Jäger, A. K. and Rønsted, N. (2015). Identification of common horsetail (Equisetum arvense L.; Equisetaceae) using thin layer chromatography versus DNA barcoding. Scientific Reports, 5: 11942.

9.       Farah, M. H., Olsson, S., Bate, J., Lindquist, M., Edwards, R., Simmonds, M. S. J., Christine, L., Hugo, J. d. B. and Mats, T. (2006). Botanical nomenclature in pharmacovigilance and a recommendation for standardisation. Drug Safety, 29(11): 1023-1029.

10.    Wright, R. J., Lee, K. S., Hyacinth, H. I., Hibbert, J. M., Reid, M. E., Wheatley, A. O. and Asemota, H. N. (2017). An investigation of the antioxidant capacity in extracts from Moringa oleifera plants grown in Jamaica. Plants, 6(4): 48.

11.    Vongsak, B., Mangmool, S. and Gritsanapan, W. (2015). Antioxidant activity and induction of mRNA expressions of antioxidant enzymes in HEK-293 cells of Moringa oleifera leaf extract. Planta Medica, 81 (12–13): 1084-1089.

12.    Sreelatha, S. and Padma, P. R. (2009). Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods for Human Nutrition, 64(4): 303-311.

13.    Falowo, A. B., Mukumbo, F. E., Idamokoro, E. M., Lorenzo, J. M., Afolayan, A. J. and Muchenje, V. (2018). Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Research International, 106: 317–334.

14.    Valdez-Solana, M. A., Mejía-García, V.Y., Téllez-Valencia, A., García-Arenas, G., Salas-Pacheco, J., Alba-Romero, J. J. and Sierra-Campos, E. (2015). Nutritional content and elemental and phytochemical analyses of Moringa oleifera grown in Mexico. Journal of Chemistry, 2015: 1-9.

15.    Mao, Q.-Q., Xu, X.-Y., Cao, S.-Y., Gan, R.-Y., Corke, H. and Beta, T. (2019). Bioactive compounds and bioactivities of ginger (Zingiber officinale roscoe). Foods, 8(6): 185.

16.    Rajani, M. and Kanaki, N. S. (2008). Phytochemical standardization of herbal drugs and polyherbal formulations. Bioactive Molecule and Medicinal Plants: pp. 349-369.

17.    Hiremath, R., Jalalpure, S. S. and Pethakar, S. (2016). Chromatographic fingerprint analysis of hydroalcoholic extract of medicinally important plant Elephantopus scaber L. using HPTLC technique. Indian Journal of Pharmaceutical Education and Research, 50(4): 689-694.

18.    Gibbons, S. (2012). An introduction to planar chromatography and its application to natural products isolation. Methods in Molecular Biology, 864: 117-153.

19.    Marston, A. (2011). Thin-layer chromatography with biological detection in phytochemistry. Journal of Chromatography A, 1218(19): 2676-2683.

20.    Sarkar, R. and Mandal, N. (2012). Hydroalcoholic extracts of Indian medicinal plants can help in amelioration from oxidative stress through antioxidant properties. Journal of Complementary & Integrative Medicine, 9: 1-9.

21.    Cieśla, Ł. (2012). Biological fingerprinting of herbal samples by means of liquid chromatography. Chromatography Research International, 2012: 1-9.

22.    Wang, C., Zhang, C.-X., Shao, C.-F., Li, C.-W., Liu, S.-H., Peng, X.-P. and Xu, Y. Q. (2016). Chemical fingerprint analysis for the quality evaluation of deepure instant pu-erh tea by HPLC combined with chemometrics. Food Analytical Methods, 9(12): 3298-3309.

23.    Vongsak, B., Sithisarn, P. and Gritsanapan, W. (2013). Simultaneous determination of crypto-chlorogenic acid, isoquercetin, and astragalin contents in Moringa oleifera leaf extracts by TLC-densitometric method. Evidence-Based Complementary and Alternative Medicine, 2013: 1-7.

24.    Tumer, T. B., Rojas-Silva, P., Poulev, A., Raskin, I. and Waterman, C. (2015). Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera. Journal of Agricultural and Food Chemistry, 63(5): 1505-1513.

25.    Komsta, Ł. (2012). Chemometrics in fingerprinting by means of thin layer chromatography. Chromatography Research International, 2012: 1-5.

26.    Olech, M., Komsta, Ł., Nowak, R., Cieśla, Ł. and Waksmundzka-Hajnos, M. (2012). Investigation of antiradical activity of plant material by thin-layer chromatography with image processing. Food Chemistry, 132(1): 549-553.

27.    Kupski, L. and Badiale-Furlong, E. (2015). Principal components analysis: An innovative approach to establish interferences in ochratoxin A detection. Food Chemistry, 177: 354-360.

28.    Lin, H., Zhu, H., Tan, J., Wang, H., Wang, Z., Li, P., Zhao, C. and Liu, J. (2019). Comparative analysis of chemical constituents of Moringa oleifera leaves from China and India by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Molecules, 24(5): 942.

29.    Rodríguez-Pérez, C., Quirantes-Piné, R., Fernández-Gutiérrez, A. and Segura-Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66: 246-254.

30.    Vergara-Jimenez, M., Almatrafi, M. M. and Fernandez, M. L. (2017). Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants, 6(4): 91.

31.    Kasai, H., Fukada, S., Yamaizumi, Z., Sugie, S. and Mori, H. (2000). Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food and Chemical Toxicology, 38(5): 467-471.

32.    Manguro, L. O. A. and Lemmen, P. (2007). Phenolics of Moringa oleifera leaves. Natural Product Research, 21(1): 56-68.

33.    Srinivasulu, C., Ramgopal, M., Ramanjaneyulu, G., Anuradha, C. M., and Kumar, C. S. (2018). Syringic acid (SA)‒a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomedicine & Pharmacotherapy, 108: 547-557.

34.    Wang, H., Yang, L., Zu, Y. and Zhao, X. (2014). Microwave-assisted simultaneous extraction of luteolin and apigenin from tree peony pod and evaluation of its antioxidant activity. Scientific World Journal, 2014: 1-12.

35.    Ganeshpurkar, A. and Saluja, A. K. (2017). The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25(2): 149-164.

36.    di Camillo Orfali, G., Duarte, A. C., Bonadio, V., Martinez, N. P., De Araújo, M. E. M. B., Priviero, F. B. M., Calvalho, P. O. and Priolli, D. G. (2016). Review of anticancer mechanisms of isoquercitin. World Journal of Clinical Oncology, 7(2): 189.

37.    Riaz, A., Rasul, A., Hussain, G., Zahoor, M. K., Jabeen, F., Subhani, Z., Younis, T., Ali, M., Sarfraz, I. and Selamoglu, Z. (2018). Astragalin: a bioactive phytochemical with potential therapeutic activities. Advances in Pharmacological Sciences, 2018: 1-15.

38.    Kumar, S. and Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 2013: 1-17.

39.    Sidhu, O. P., Annarao, S., Chatterjee, S., Tuli, R., Roy, R. and Khetrapal, C. L. (2011). Metabolic alterations of Withania somnifera (L.) dunal fruits at different developmental stages by NMR spectroscopy. Phytochemical Analysis, 22(6): 492-502.

40.    Kårlund, A., Moor, U., Sandell, M. and Karjalainen, R. O. (2014). The impact of harvesting, storage and processing factors on health-promoting phytochemicals in berries and fruits. Processes, 2(3): 596-624.

41.    Nisa, F. Z., Astuti, M., Haryana, S. M. and Murdiati, A. (2019). Antioxidant activity and total flavonoid of Carica papaya L. leaves with different varieties, maturity and solvent. AgriTECH, 39(1): 54-59.

42.    Anju, D. (2017). Phytoequivalence: A balanced perspective. Annals of Pharmacology and Pharmaceutics, 2(6): 2-6.