Malaysian
Journal of Analytical Sciences Vol 24 No 3
(2020): 339 - 349
LIPID DISTRIBUTIONS ASSOCIATED WITH CADAVER
DECOMPOSITION IN MANGROVE AND OIL PALM PLANTATION SOILS UNDER TROPICAL CLIMATE
(Taburan Lipid Berkaitan dengan Pereputan Kadaver dalam
Tanah Bakau dan Ladang Kelapa Sawit Di Bawah Iklim Tropika)
Siti Sofo Ismail1*, Xueer Chock1,
Mohamad Afdhali Kholidan1, Ku Mohd. Kalkausar Ku Yusof1, Siti Fathimah Putery Jemain2
1Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
2Department of Chemistry, Centre for Foundation
Studies,
International Islamic University Malaysia, 26300
Gambang, Pahang, Malaysia
*Corresponding author:
sofo@umt.edu.my
Received: 28 December
2019; Accepted: 8 April 2020; Published:
9 June 2020
Abstract
The
burial environment has a significant effect on decomposition process. The most
influential environmental factors that determine the fate of the process are
temperature, moisture, pH, and partial pressure of oxygen. In this study, the
decomposition of a cadaver buried in soils with contrasting pH under a tropical
climate was investigated. Due to ethical issues, the fatty flesh of a
commercial pig (Sus scrofa) was
buried in mangrove (mild alkaline pH) and oil palm plantation (acidic pH)
soils, which are amongst the most common body disposal sites encountered in
forensic investigations. A controlled laboratory experiment was carried out.
Soils were collected at different sampling points, corresponding to different
decomposition stages. Modified Bligh-Dyer extraction method was used to extract
soil lipids. Gas chromatography-flame ionisation detector (GC-FID) was used to
identify the obtained lipids. A similar trend in the rate of decomposition was
observed for both soils. The decomposition rate was higher at the initial and
putrefaction stages. A sharp increase in the decomposition rate was observed
between day 3 and day 5 of the burial interval. However, mangrove soil
demonstrated a higher decomposition rate at all decomposition stages.
Furthermore, the concentrations of palmitic (C16:0), stearic (C18:0),
and oleic (C18:1) acids were higher in mangrove soil compared to
that of oil palm plantation soil. The significant differences observed between
these contrasting pH soils may indicate that soil pH will eventually impose a
different effect on decomposition.
Keywords: Cadaver decomposition, soil pH,
clandestine grave, decomposition rate, fatty acids
Abstrak
Persekitaran
pengebumian mempunyai kesan yang signifikan terhadap proses penguraian. Faktor
persekitaran yang paling berpengaruh yang menentukan nasib proses adalah suhu,
kelembapan, pH, dan tekanan separa oksigen. Dalam kajian ini, penguraian
kadaver yang ditanam dalam tanah dengan pH yang berbeza di bawah iklim tropika
telah disiasat. Disebabkan isu etika, daging lemak babi komersial (Sus scrofa) ditanam di ladang bakau (pH
sedikit alkali) dan ladang kelapa sawit (pH berasid). Kedua-dua jenis kawasan
ini adalah antara tapak pelupusan mayat yang paling biasa ditemui dalam
siasatan forensik. Eksperimen makmal terkawal telah dijalankan. Tanah
dikumpulkan pada titik pensampelan yang berbeza, sepadan dengan peringkat
penguraian yang berlainan. Kaedah pengekstrakan Bligh-Dyer yang telah diubah
suai digunakan untuk mengekstrak lipid tanah. Kromatografi gas-pengesan nyalaan
ion (GC-FID) digunakan untuk mengenal pasti lipid yang diperoleh. Corak yang
sama dalam kadar penguraian telah diperhatikan untuk kedua-duanya. Kadar
penguraian lebih tinggi pada peringkat awal dan pembusukan. Kadar penguraian
meningkat mendadak telah diperhatikan antara hari 3 dan hari 5 selang
pengebumian. Walau bagaimanapun, tanah bakau menunjukkan kadar penguraian yang
lebih tinggi pada semua peringkat penguraian. Selain itu, kepekatan asid-asid
palmitik (C16: 0), stearik (C18: 0), dan oleik (C18:
1) lebih tinggi di dalam tanah bakau berbanding dengan tanah ladang
kelapa sawit. Perbezaan yang ketara antara pH tanah yang berlainan ini mungkin
menunjukkan bahawa pH tanah akan akhirnya memberi kesan yang berbeza terhadap
proses penguraian.
Kata kunci: pereputan kadaver, pH tanah, kubur rahsia, kadar
pereputan, asid lemak
References
1. Mann, R. W., Bass, W.
M. and Meadows, L (1990). Time since death and decomposition of the human body:
variables and observations in case and experimental field studies. Journal of Forensic Science, 35:103-11.
2. Janaway, R. C. (1997).
The decay of buried human remains and their associated materials. studies in
crime: an introduction to forensic archaeology. Routledge, London: pp. 58-85.
3. Forbes, S. L., Stuart,
B. H. and Dent, B. B. (2005). The effect of soil type on adipocere formation. Forensic Science International, 154(1):
35-43.
4. Forbes, S. L., Stuart.
B. H. and Dent, B. B. (2005b). The effect of the burial environment on
adipocere formation. Forensic Science
International, 154(1): 24-34.
5. Haslam, T.
C. and Tibbett, M. (2009). Soils of contrasting pH affects the decomposition of
buried mammalian (Ovis aries)
skeletal muscle tissue. Journal of
Forensic Sciences,
54(4): 900-904.
6. Vass, A. A. (2011). The elusive universal post-mortem
interval formula. Forensic Science
International, 204(1-3): 34-40.
7. Sullivan,
T. S. (2017). Soil acidity impact beneficial soil microorganisms. Washington
State University Extension: pp.1 - 6.
8. Lauber, C.
L., Strickland, M. S., Bradford, M. A. and Fierer, N. (2008). The influence of
soil properties on the structure of bacterial and fungal communities across
land-use types. Soil
Biology and Biochemistry,
40 (9): 2407-2415.
9. Lauber, C.
L., Hamady, M., Knight, R. and Fierer, N. (2009). Pyrosequencing-based
assessment of soil pH as a predictor of soil bacterial community structure at
the continental scale. Applied and Environmental Microbiology, 75(15): 5111-5120.
10. Carter, D. O., Yellowlees, D. and Tibbett, M. (2006).
Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften, 94(1): 12-24.
11. Conyers, L, B. (2006). Ground penetrating radar
techniques to discover and map historic graves. Historical Archaeology, 40(3): 64-73.
12. Larson, D., Vass, A. A. and Wise, M. (2011). Advanced
Scientific Methods and Procedures in the Forensic Investigation of Clandestine
Graves. Journal of Contemporary Criminal
Justice, 27(2): 149 - 182.
13. Chock, X. and Ismail, S. S. (2017). Lipid distribution
associated with a clandestine grave: A burial in mangrove soil. Transaction on Science and Technology,
4(4): 476-481.
14. Lowe, A.
C., Beresford, D. O., Gaspari, F., O’rien, R. C., Stuart, B. H. and Forbes, S.
L. (2013). The effect of soil texture on the degradation of textiles associated
with buried bodies. Forensic Science
International, 231(1-3): 331-339.
15. Notter, S. J., Stuart, B. H., Rowe, R. and Langlois,
N. (2009). The initial changes of fat deposits during the decomposition of
human and pig remains. Journal of Forensic Sciences, 54(1): 195-201.
16. Derrien,
M., Cabrera, F. A., Tavera, N. L., Manzano, C. A. and Vizcaino, S. C. (2015).
Sources and distribution of organic matter along the ring of cenotes, Yucatan,
Mexico: Sterol markers and statistical approaches. Science of
the Total Environment,
511: 223-229.
17. Bull, I. D., Berstan, R., Vass, A., and Evershed, R.
P. (2009). Identification of a disinterred grave by molecular and stable
isotope analysis. Science & Justice, 49(2): 142-149.
18. Derrien,
M., Yang, L. and Hur, J. (2017). Lipid biomarkers and spectroscopic indices for
identifying organic matter sources in aquatic environments: A review. Water
Research, 112: 58-71.
19.
Jin, J. F., Luo, G. H. and Gao, C. L. (2008). Study on the
relationship between content of lipid in bone marrow of sternum and postmortem
interval. Shaanxi
Medical Journal, 37: 336-338.
20. Bligh, E. G. and Dyer, W. J. (1959). A rapid method of
total lipid extraction and purification. Canadian
Journal of Biochemistry and Physiology, 37(8): 911-917.
21. Carter, D. O. (2005). Forensic taphonomy: Processes
associated with cadaver decomposition in soil. Thesis of Ph.D. Degree, James
Cook University.
22. Zhou, C.
and Byard, R. W. (2011). Factors and processes causing accelerated
decomposition in human cadavers - an overview. Journal of Forensic and Legal Medicine, 18(1): 6-9.
23. Teo, C. H., Hamzah, N.
H., Hing, H. L. and Hamzah, S. P. (2014). Decomposition process and postmortem
changes: review. Sains Malaysiana, 43(12): 1873-1882.
24. Stokes, K. L., Forbes, S. L., Benninger, L. A.,
Carter, D. O. and Tibbett. M. (2009). Decomposition studies using animal models
in contrasting environments: evidence from changes in soil chemistry and
microbial activity. In: Ritz, K., Dawson, L. and Miller, D. (Eds.), Criminal and Environmental Soil Forensics.
Springer Science & Business Media, Bradford: pp. 357-377.
25. Tibbett, M. and Carter, D. O. (2009). Research in
forensic taphonomy: a soil-based perspective. In: Ritz, K., Dawson, L. and
Miller, D. (Eds.), Criminal and
Environmental Soil Forensics. Springer Science & Business Media: pp.
317-331.
26. Campobasso, C. P., Di Vella, G. and Introna, F.
(2001). Factors affecting decomposition and diptera colonization. Forensic Science International,
120(1-2): 18-27.
27. Krishna, M. P. and Mohan, M. (2017). Litter
decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2(4): 236-249.
28. Kibblewhite, M., Tóth, G. and Hermann, T. (2015).
Predicting the preservation of cultural artefacts and buried materials in soil.
Science of the Total Environment,
529: 249-263.
29. Mant, A. K. (1987). Knowledge acquired from post-war
exhumation. In: Boddington, A., Garland, A. N. and Janaway, R.C: Death, decay
and reconstruction-approaches to archaeological and forensic science.
Manchester University Press, Manchester: pp. 65-78.
30. Takatori, T (1996). Investigations on the mechanism of
adipocere formation and its relation to other biochemical reactions. Forensic Science International, 80(1-2):
49-61.
31.
Tsokos, M. and Byard, R. W. (2016). Postmortem changes: Overview. In: encyclopedia of forensic and legal
medicine. 2nd
Edition, Academic Press Oxford: pp. 10-31.
32. Benninger, L. A., Carter, D. O. and Forbes, S. L.
(2008). The biochemical alteration of soil beneath a decomposing carcass. Forensic Science International,
180(2-3): 70-75.
33. Fierer, N. and Jackson, R. B. (2006). The diversity
and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103(3): 626-631.
34. Cobaugh, K. L., Schaeffer, S. M. and Debruyn, J. M.
(2015). Functional and structural succession of soil microbial communities
below decomposing human cadavers. PloS
One, 10(6): e0130201.
35. Islam, R. and Wright, S. R. (2004). Soil microbial
communities. Chapter in book: Encyclopedia of
soil, Marcel Dekker, Inc. New York.
36. Cusack, D.
F., Silver, W. L., Torn, M. S., Burton, S. D. and Firestone, M. K. (2011).
Changes in microbial community characteristics and soil organic matter with
nitrogen additions in two tropical forests. Ecology, 92(3):
621-632.
37. Vass, A. A., Barshick, S. A., Sega, G., Caton, J.,
Skeen, J. T., Love, J. C. and Synstelien, J. A. (2002). Decomposition chemistry
of human remains: A new methodology for determining the postmortem interval. Journal of Forensic Science, 47(3):
542-553.
38. Janaway, R., Percival, S. and Wilson, A. (2009).
Decomposition of human remains. In: microbiology
and aging. Springer, New York: pp. 313-334.
39. Dent, B. B., Forbes, S. L. and Stuart, B. H. (2004).
Review of human decomposition processes in soil. Environmental Geology, 45(4): 576-585.
40. Goff, M. L. (2009). Early post-mortem changes and
sages of decomposition in exposed cadavers. Experimental
& Applied Acarology, 49(1-2): 21-36.
41. Moucawi,
J., Frustec, E. and Jacquesy, R. (1981). Decomposition of lipids soils: Free
and esterified fatty acids, alcohol and ketones. Soil Biology and Biochemistry, 13 (6): 461-468.
42. Forbes, S. L. (2008). Decomposition chemistry in a
burial environment. Soil analysis in forensic taphonomy. Taylor & Francis,
New York: pp. 203-223.