Malaysian
Journal of Analytical Sciences
Vol 24 No 3 (2020): 300 - 312
A MINI REVIEW ON SPOROPOLLENIN-BASED MATERIALS
FOR REMOVAL OF HEAVY METAL IONS FROM AQUEOUS SOLUTION
(Ulasan
Mini Ke Atas Bahan Berasaskan Sporopollenin untuk Penyingkiran Ion Logam Berat
dari Larutan Akueus)
Wan Aini
Wan Ibrahim1, 2*,
Abdul-Aziz Mohd Hassan1, 3, Zetty Azalea Sutirman1, Mohd
Bakri Bakar1
1Department
of Chemistry, Faculty of Science
2Centre
for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and
Industrial Research
Universiti Teknologi Malaysia, 81310 UTM Johor
Bahru, Johor, Malaysia
3Department
of Pure and Applied Chemistry, Faculty of Science,
Kebbi State University of Science and Technology Aliero, Nigeria
*Corresponding author: waini@utm.my; wanaini@kimia.fs.utm.my
Received: 3 March 2020;
Accepted: 8 April 2020; Published: 9 June 2020
Abstract
The use of sporopollenin-based materials as adsorbents in
addressing environmental problems such as in removal of heavy metals from
aqueous environment has received limited attention despite its remarkable
physical and chemical properties that guaranteed its great potential for this
application. This mini-review provides up-to-date information on the research
and development of sporopollenin-based materials for the treatment of toxic
heavy metals contaminated aqueous environments. Conventional techniques for
heavy metals removal from aqueous environment are discussed; limitations and
advantages of these techniques are highlighted. Sporopollenin-based materials
were found to be good adsorbents in control and remediation of heavy metal ions
in wastewater, but considering its characteristics, the full potentials of
sporopollenin for this application is yet to be fully harnessed.
Keywords: sporopollenin, adsorbent, aqueous solution,
heavy metals, environment
Abstrak
Penggunaan bahan
berasaskan sporopollenin sebagai pengerap dalam menyelesaikan masaalah alam sekitar seperti
penyingkiran logam berat dari larutan akueus telah mendapat perhatian terhad walaupun sifat fizikal
dan kimianya yang luar biasa yang menjamin potensi yang besar untuk aplikasi
ini. Ulasan mini ini memberikan
maklumat terkini tentang penyelidikan dan pembangunan bahan berasaskan
sporopollenin untuk merawat persekitaran akueus yang dicemari logam berat
bertoksik. Teknik
konvensional untuk penyingkiran logam berat dari persekitaran akueus
dibincangkan; kelemahan serta kelebihan teknik ini diserlahkan. Bahan berasaskan sporopollenin didapati adalah penjerap
yang baik dalam kawalan dan pemulihan ion logam berat dalam air kumbahan tetapi mempertimbangkan cirinya, potensi keseluruhan sporopollenin
untuk aplikasi ini masih belum dimanfaatkan sepenuhnya.
Kata kunci: sporopollenin, penjerap, larutan akueus, logam berat, alam sekitar
References
1. Hatay,
I., Gup, R. and Ersoz, M. (2008). Silica gel functionalized with
4-phenylacetophynone 4 aminobenzoylhydrazone: synthesis of a new chelating
matrix and its application as metal ion collector. Journal
of Hazardous Materials, 150: 546-553.
2. Wang,
J., Zhang, D., Lawson, T. R. and Bartsch, R. A. (2009). Sorption of heavy metal
ions by silica gel-immobilized, proton-ionizable calix[4] arenes. Talanta, 78: 477-483.
3. Kang, S. Y., Lee, J. U., Moon, S. H. and Kim,
K. W. (2004). Competitive adsorption characteristics of Co2+, Ni2+,
and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere, 56(2): 141-147.
4. Gode, F.
and Pehlivan, E. (2007). Sorption of
Cr(III) onto chelating b-DAEGsporopollenin and CEPsporopollenin resins. Bioresource Technology, 98: 904-911.
5. Gurten,
A. A Ucan, M. Abdullah, M. I. and Ayar, A. (2006) Effect of the temperature and
mobile phase composition on the retention behavior of nitro anilines on ligand
exchange stationary phase. Journal of
Hazardous Materials, B135: 53-57.
6. Jarup,
L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68: 167-182.
7. Hernández,
M. V., Nava, R., Acosta-Silva, Y. J., Macías-Sánchez, S. A., Pérez-Bueno, J. J.,
Pawelec, B. (2012). Adsorption
of lead(II) on SBA-15 mesoporous molecular sieve functionalized with−NH2groups. Microporous Mesoporous Materials, 160:
133-142.
8. Akpor, O. B.
(2014). Heavy metal pollutants in wastewater effluents: sources, effects
and remediation. Advances Bioscience and
Bioengineering, 2: 37.
9. Kyzas,
G. Z. and Deliyanni, E. A. (2013). Mercury(II) removal with modified magnetic
chitosan adsorbents. Molecules, 18:
6193-6214.
10. Singh, R., Singh, S., Parihar, P.,
Singh, V. P. and Prasad S. M. (2015). Arsenic contamination consequences and
remediation techniques: a review. Ecotoxicology
and Environmental Safety, 112: 247-270.
11. Sari, A., Mendil, D., Tuzen, M. and
Soylak, M. (2008). Biosorption of Cd(II)
and Cr(III) from aqueous solution by moss (Hylocomium
splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 144: 1-9.
12. Waalkes, M. P. (2003). Cadmium
carcinogenesis. Mutation Research - Fundamental and
Molecular Mechanisms of Mutagenesis, 533: 107-120.
13. Filipiˇc, M. (2012). Mechanisms
of cadmium induced genomic instability. Mutation Research -
Fundamental and Molecular Mechanisms of Mutagenesis, 733: 69-77.
14. Anwar, J. Shafique, U. Salman, M. and
Memoona, M. (2009). Adsorption study of cadmium(II) and lead(II) on radish
peels. Journal of Scientific Research,
39: 29-34.
15. Naseem, R. and Tahir, S. S. (2001).
Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an
adsorbent. Water Research, 35:3982-3986.
16. Wang, X. Qu, R. Wei, Z. Yang, X. and Wang, Z. (2014). Effect of water quality
on mercury toxicity to Photobacterium
phosphoreum: model development and its application in natural waters. Ecotoxicology and Environmental Safety,
104: 231-238.
17. Sieger, F. A. S., Silva, G. D.,
Ardila, G. P. and García, R. G. (2012). Mercury chronictoxicity might be
associated to some cases of hydrocephalus in adult humans? Medical Hypotheses. 79: 13-16.
18. Selvi, K. (2001). Removal of Cr(VI)
from aqueous solution by adsorption onto activated carbon, Bioresource Technology, 80: 87-89.
19. Kumar, P. A. Ray, M. and Chakraborty, S. (2007).
Hexavalent chromium removal from wastewater using aniline formaldehyde
condensate coated silica gel. Journal of
Hazardous Material, 143: 24-32.
20. Mohod, C. V. and Dhote, J. (2013).
Review of heavy metals in drinking water and their effect on human health. The International Journal
of Innovative Research in Science, Engineering and Technology, 2: 2992-2996.
21. World Health Organization, WHO (2011).
Guidelines for Drinking-water Quality-4th edition, 1541.
22. Ministry
of health Malaysia, Engineering Services Division. (2010). Drinking water
quality surveillance program, drinking water quality standards. Access from http://kmam.moh.gov.my/
public-user/drinking-water-quality-standard.html. [Accessed 21/04/2019].
23. Barakat, M. A. (2011). New trends in
removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4: 361-377.
24. Khraisheh,
M. A., Al-degs, Y. S., and Mcminn, W. A. (2004). Remediation of wastewater
containing heavy metals using raw and modified diatomite. Chemical
Engineering Journal, 99(2):
177-184.
25. Ayodele,
A. and Idris, A. (2018). Chemical precipitation approach to the removal of
heavy hetals from wastewater for discharge into sanitary sewerage. United Journal of Chemistry, 1: 167-171.
26. Chen,
Q., Yao, Y., Li, X., Lu, J., Zhou, J., and Huang, Z. (2018). Comparison of heavy metal removals
from aqueous solutions by chemical precipitation and characteristics of
precipitates. Journal of Water Process
Engineering, 26: 289-300
27. Kurniawan, T. A., Chan, G. Y. S., Lo,
W. H. and Babel, S. (2006). Physico-chemical treatment techniques for
wastewater laden with heavy metals. Chemical
Engineering Journal, 118: 83-98.
28. Ku, Y. and Jung, I. (2001).
Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with
the presence of titanium dioxide. Water
Research, 35: 135-142.
29. Mirbagheri, S. A. and Hosseini, S. N.
(2005). Pilot plant investigation on petrochemical wastewater treatment for the
removal of copper and chromium with the objective of reuse. Desalination, 171: 85-93.
30. Aziz,
H. A., Adlan, M. N. and Ariffin, K. S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu
andCr(III)) removal from water in Malaysia: Post treatment by high quality
limestone, Bioresource Technology,
99: 1578-1583.
31. Maralmaa, B., Erdenechimeg, D., Koichiro, S. and
Yoshihiro, S. (2018). Removal and recovery of
heavy metals from industrial wastewater by precipitation and foam separation
using lime and casein. Journal of Environmental Science and
Technology, 11 (1): 1-9.
32. Zewail,
T. M. and Yousef, N. S. (2015). Kinetic study of heavy metal ions removal by
ion exchange in batch conical air spouted bed. Alexandria Engineering Journal, 54: 83-90.
33. Abo-Farha,
S. A., Abdel-Aal, A. Y., Ashour, I. A. and Garamon, S. E. (2009). Removal of
some heavy metal cations by synthetic resin purolite C100. Journal of Hazardous Materials, 169: 190-194.
34. Rudnicki,
P., Hubicki, Z. and Kołodyńska, D. (2014). Evaluation of heavy metal
ions removal from acidic wastewater streams. Chemical Engineering Journal, 252: 362-373.
35. Gurnule,
W. B. and Dhote, S. S. (2012). Preparation, characterization and chelating
ion-exchange properties of copolymer resin derived from 2,4-dihydroxy benzoic
acid, ethylene diamine and formaldehyde. Der
Pharma Chemica, 4: 791-799.
36. Lin,
L. and Juang, R. (2007). Ion-exchange kinetics of Cu(II) and Zn(II) from
aqueous solutions with two chelating resins. Chemical Engineering Journal, 132: 205-213.
37. Agnieszka,
B., Monika, O. N. and Stanisława, S. R. (2016). Removal of lead, cadmium
and copper ions from aqueous solutions by using ion exchange resin C-160. Mineral Resources Management, 32(4): 129-140.
38. Ríos
C. A., Williams C. D. and Roberts C. L. (2008). Removal of heavy metals from
acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic
zeolites. Journal of Hazardous Materials,
156: 2335.
39. Motsi,
T. Rowson, N. A. and Simmons, M. J. H. (2009). Adsorption of heavy metals from
acid mine drainage by natural zeolite. International
Journal of Mineral Processing, 92: 42-48.
40. Alvarez,
A. E., Garcıa, S. A. and Querol, X. (2003). Purification of metal
electroplating wastewaters using zeolites. Water
Research, 37:4855-4862.
41. Yazan,
T. and Suhail, S. (2017). The removal of heavy metals from aqueous solution
using natural Jordanian zeolite. Applied
Water Science, 7:2021-2028.
42. Erdem,
E., Karapinar, N. and Donat, R. (2004).
The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280: 309-314.
43. Kragovi´c,
M., Dakovi´c, A., Markovi´c, M., Krsti´c, J., Gatta, G.D. and Rotiroti, N.
(2013).Characterization of lead sorption by the natural and Fe(III)-modified
zeolite. Applied Surface Science,
283: 764-774.
44. Kragovi´c,
M., Dakovi´c, A., Sekuli´c, ., Trgo, M., Ugrina, M., Peri´c, J. and Gatta, G. D.
(2012). Removal of lead from aqueous solutions by using the natural and
Fe(III)-modified zeolite. Applied Surface
Science, 258: 3667-3673.
45. Kragovi´c,
M., Paali´c, S., Markovi´c, M., Petrovi´c, M., Nedeljkovi´c, B.,
Momˇcilovi´c, M. and Stojmenovi´c, M. (2018). Natural and modified
zeolite-alginate composites. Application for removal of heavy metal cations
from contaminated water solutions. Minerals,
8(11): 2-16.
46. Parag,
S., Vikal, G. and Ruchi, K. (2010). Synthesis of zeolite from fly ash and
removal of heavy metal ions from newly synthesized zeolite. E-Journal of Chemistry, 7(4): 1200-1205
47. Lu,
X., Wang, F., Li, X., Shih, K. and Zeng, E. Y. (2016). Adsorption and thermal
stabilization of Pb2+ and Cu2+ by zeolite. Industrial Engineering Chemistry Research,
55: 8767-8773.
48. Farooq,
U., Kozinski, J. A., Khan, M. A. and Athar, M. (2010). Biosorption of heavy
metal ions using wheat based biosorbents − A review of the recent literature.
Bioresource Technology, 101: 5043-5053.
49. Sivarajasekar,
N. and Baskar, R. (2019). Adsorption of basic magenta II onto H2SO4
activated immature Gossypium hirsutum seeds:
kinetics, isotherms, mass transfer, thermodynamics and process design. Arabian
Journal of Chemistry, 12(7): 1322-1337.
50. Ruparelia,
J. P., Duttagupta, S. P., Chatterjee, A. K. and Mukherji, S. (2008). Potential
of carbon nano materials for removal of heavy metals from water. Desalination, 232: 145-156.
51. Tawabini,
B., Al-Khaldi, S., Atieh, M. and Khaled, M. (2010). Removal of mercury from
water by multi-walled carbon nanotubes. Water
Science and Technology, 61: 591-598.
52. Pyrzynska
K. and Bystrzejewski M. (2010). Comparative study of heavy metal ions sorption
onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic
nanoparticles. Colloids Surfaces A,
362: 102-109.
53. Sall,
M. L., Diaw, A. D., Sall, D. G., Biraud, A. C., Oturan, N., Oturan, M. A.,
Fourdrin, C., Huguenot, D. and Aaron, J. J. (2018). Removal of lead and cadmium
from aqueous solutions by using 4-amino-3-hydroxynaphthalene sulfonic
acid-doped polypyrrole films. Environmental
Science and Pollution Research, 25: 8581-8591.
54. Moradi,
A., Moghadam, P. N., Hasanzadeh, R., Sillanpaa, M. (2017). Chelating magnetic
nano composite for the rapid removal of Pb(II) ions from aqueous solutions:
characterization, kinetic, isotherm and thermodynamic studies. RSC Advances. 7: 433-448.
55. Sao,
K., Pandey, M., Pandey, P. K. and Khan, F. (2017). Highly efficient biosorptive
removal of lead from industrial effluent. Environmental
Science and Pollution Research, 24: 18410-18420.
56. Bulgariu,
D. and Bulgariu, L. (2016). Potential use of alkaline treated algae waste
biomass as sustainable biosorbent for clean recovery of cadmium(II) from
aqueous media: batch and column studies. Journal
of Cleaner Production, 112: 4525-4533.
57. Zuo,
W. Q. Chen, C. Cui, H. J.
and Fu, M. L. (2017). Enhanced removal of Cd(II) from aqueous solution
using CaCO3 nanoparticle modified sewage sludge biochar. RSC
Advances, 7: 16238-16243.
58. Sharma,
R., Sarswat, A., Junior, C. U. P. and Mohan, D. (2017). Cadmium and lead
remediation using magnetic and non-magnetic sustainable biosorbents derived
from Bauhinia purpurea pods. RSC Advances, 7: 8606-8624.
59. Zha,
R., Shi, T., Zhang, Z., Xu, D., Jianga, T. and Zhang, M. (2017).
Quasi-reverse-emulsion-templated approach for a facile and sustainable
environmental remediation for cadmium. RSC
Advances, 7: 6345-6357.
60. Luo,
M., Lina, H., Lia, B., Donga, Y., Hea, Y. and Wanga, L. (2018). A novel
modification of lignin on corncob-based biochar to enhance removal of cadmium
from water. Bioresource Technology,
259: 312-318.
61. Tang,
C. Shu, Y. Zhang, R. Li, X. Song, J. Li, B. Zhang,
Y. Oua, D. (2017). Comparison of the
removal and adsorption mechanisms of cadmium and lead from aqueous solution by
activated carbons prepared from Typha
angustifolia and Salix
matsudana. RSC Advances, 7:
16092-16103.
62. Ma,
L., Wei1, Q., Chen, Y., Song, Q. Sun, C. Z. and Wang, G. (2018). Removal of
cadmium from aqueous solutions using industrial coal fly ash-nZVI. Royal Society Open Science, 5: 171051.
63. Chen,
G. and Shi, L. (2017). Removal of Cd(II) and Pb(II) ions from natural water
using a low-cost synthetic mineral: Behavior and mechanisms, RSC Advances, 7: 43445-43454.
64. Sutirman,
Z. A., Sanagi, M. M.,
Abd Karim, K. J. and Wan Ibrahim, W. A.
(2016). Preparation of methacrylamide-functionalized crosslinked chitosan by
free radical polymerization for the removal of lead ions. Carbohydrate Polymer, 151: 1091-1099.
65. Gabris,
M. A., Jume, B. H., Rezaali, M., Syed, S. and Nodeh, H. R. (2018). Novel magnetic
graphene oxide functionalized cyanopropyl nanocomposite as an adsorbent for the
removal of Pb(II) ions from aqueous media: equilibrium and kinetic studies. Environmental
Science Pollution Research, 25(27):
27122-27132.
66. Gao,
T., Yu, J., Zhou, Y. and Jiang, X. (2017). The synthesis of graphene oxide
functionalized with dithiocarbamate group and its prominent performance on
adsorption of lead ions, Journal of
Taiwan Institute of Chemical Engineering, 71: 426-432.
67. Tan, P., Sun, J., Hu, Y. Y.,
Fang, Z., Bi Q., Chen, Y. C. and Cheng, J. H. (2015). Adsorption of Cu(2+),
Cd(2+) and Ni(2+) from aqueous single metal solutions on
graphene oxide membranes. Journal of
Hazardous Material, 297: 251-260.
68. Nuri,
U. and Mustafa E. (2006). Adsorption characteristics of heavy metal ions onto a
low cost biopolymeric sorbent from aqueous solutions. Journal of Hazardous Materials, B136: 272-280.
69. Murat,
S. D., Harikishore, K. R. and Berkant, K. (2014). Biosorption properties of
pretreated sporopollenin biomass for lead(II) and copper(II): Application of
response surface methodology. Ecological
Engineering, 68: 200-208.
70. Nuri,
U. and Mustafa E. (2007). Removal of heavy metal ions by using
dithiocarbamated-sporopollenin. Separation
and Purification Technology, 52: 461-469.
71. Sener,
M., Kayana, B., Akaya, S., Zmenb, B. G. and Kalderisc D. (2016). Fe-modified
sporopollenin as a composite biosorbent for the removal of Pb2+ from
aqueous solutions. Desalination and Water
Treatment, 57: 28294-28312.
72. Ahmad
N. F., Kamboh M. A., Nodeh H. R., Abd Halim S. N. and Mohamad S. (2017). Synthesis of piperazine functionalized
magnetic sporopollenin: A new organic-inorganic hybrid material for the removal
of lead(II) and arsenic(III) from aqueous solution. Environmental Science and Pollution Research, 24: 21846 -21858.
73. Ersoz,
M., Pehlivan, E., Dunkan, H.J., Yildiz, S. and Pehlivan, M. (1995). Ion
exchange equilibria of heavy metals in aqueous solution in aqueous solution on
new chelating resins of sporopollenin. Reactive Polymers, 24: 195-202.
74. Idris
S. and
Gulsin A. (2015) Chitosan/sporopollenin
microcapsules: Preparation, characterization and application in heavy metal
removal.
International
Journal of Biological Macromolecules,
75: 230-238.
75. Çimen, A.,
Bilgiç, A., Kursunlu, A. N., Gübbük, I. H. and
Uçan, H. I. (2014). Adsorptive removal of Co(II), Ni(II), and Cu(II) ions from
aqueous media using chemically modified sporopollenin of Lycopodium clavatum as novel biosorbent. Desalination
and Water Treatment, 52: 4837-4847.
76. Gubbuk, I. H. (2011). Isotherms and
thermodynamics for the sorption of heavy metal ions onto functionalized
sporopollenin. Journal of Hazardous
Materials, 186: 416-422.
77. Gubbuk,
I. H., Gürfidan, L., Serkan, E. and Yilmaz, M. (2012). Surface
modification of sporopollenin with calixarene derivative, characterization and
application for metal removal. Water Air
Soil Pollution, 223: 2623-2632.
78. Sayin,
S., Gubbuk, I. H. and Yilmaz, M. (2013). Preparation of calix[4]arene-based
sporopollenin and examination of its dichromate sorption ability. Journal of Inclusion Phenomena and Macrocyclic
Chemistry, 75:111-118.
79. Hassan,
A. M, Wan Ibrahim, W. A., Bakar M. B, Sanagi, M. M., Sutirman, Z. A, Nodeh, H. R
and Mokhter M. A. (2020). New effective
3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based
silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous
environment. Journal of
Environmental Management, 253: 109658.
80. Grahame,
M., Andrew, N. B., Alberto, D. T., Stephen L. A. and Thozhukat, S. (2015). Sporopollenin, the least known yet
toughest natural biopolymer. Frontiers in Materials, 2: 66.
81.
Amro, K. F. D., Elham, M. A.,
Salwa, A. A. and Mai, M. R. (2016). Fabrication and characterisation of novel
natural Lycopodium clavatum sporopollenin
microcapsules loaded in-situ with nano-magnetic
humic acid-metal complexes. Journal of Encapsulation and
Adsorption Sciences, 6: 109-131.