Malaysian Journal of Analytical Sciences Vol 24 No 3 (2020): 300 - 312

 

 

 

 

A MINI REVIEW ON SPOROPOLLENIN-BASED MATERIALS FOR REMOVAL OF HEAVY METAL IONS FROM AQUEOUS SOLUTION

 

(Ulasan Mini Ke Atas Bahan Berasaskan Sporopollenin untuk Penyingkiran Ion Logam Berat dari Larutan Akueus)

 

Wan Aini Wan Ibrahim1, 2*, Abdul-Aziz Mohd Hassan1, 3, Zetty Azalea Sutirman1, Mohd Bakri Bakar1

 

1Department of Chemistry, Faculty of Science

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research                             

 Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

3Department of Pure and Applied Chemistry, Faculty of Science,

              Kebbi State University of Science and Technology Aliero, Nigeria 

 

*Corresponding author:  waini@utm.my; wanaini@kimia.fs.utm.my

 

 

Received: 3 March 2020; Accepted: 8 April 2020; Published: 9 June 2020

 

 

Abstract

The use of sporopollenin-based materials as adsorbents in addressing environmental problems such as in removal of heavy metals from aqueous environment has received limited attention despite its remarkable physical and chemical properties that guaranteed its great potential for this application. This mini-review provides up-to-date information on the research and development of sporopollenin-based materials for the treatment of toxic heavy metals contaminated aqueous environments. Conventional techniques for heavy metals removal from aqueous environment are discussed; limitations and advantages of these techniques are highlighted. Sporopollenin-based materials were found to be good adsorbents in control and remediation of heavy metal ions in wastewater, but considering its characteristics, the full potentials of sporopollenin for this application is yet to be fully harnessed. 

 

Keywords:  sporopollenin, adsorbent, aqueous solution, heavy metals, environment

 

Abstrak

Penggunaan bahan berasaskan sporopollenin sebagai pengerap dalam menyelesaikan masaalah alam sekitar seperti penyingkiran logam berat dari larutan akueus telah mendapat perhatian terhad walaupun sifat fizikal dan kimianya yang luar biasa yang menjamin potensi yang besar untuk aplikasi ini. Ulasan mini ini memberikan maklumat terkini tentang penyelidikan dan pembangunan bahan berasaskan sporopollenin untuk merawat persekitaran akueus yang dicemari logam berat bertoksik. Teknik konvensional untuk penyingkiran logam berat dari persekitaran akueus dibincangkan; kelemahan serta kelebihan teknik ini diserlahkan. Bahan berasaskan sporopollenin didapati adalah penjerap yang baik dalam kawalan dan pemulihan ion logam berat dalam air kumbahan tetapi mempertimbangkan cirinya, potensi keseluruhan sporopollenin untuk aplikasi ini masih belum dimanfaatkan sepenuhnya.

 

Kata kunci:  sporopollenin, penjerap, larutan akueus, logam berat, alam sekitar 
 

References

1.       Hatay, I., Gup, R. and Ersoz, M. (2008). Silica gel functionalized with 4-phenylacetophynone 4 aminobenzoylhydrazone: synthesis of a new chelating matrix and its application as metal ion collector.  Journal of Hazardous Materials, 150: 546-553.

2.       Wang, J., Zhang, D., Lawson, T. R. and Bartsch, R. A. (2009). Sorption of heavy metal ions by silica gel-immobilized, proton-ionizable calix[4] arenes. Talanta, 78: 477-483.

3.       Kang, S. Y., Lee, J. U., Moon, S. H. and Kim, K. W. (2004). Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere, 56(2): 141-147.

4.       Gode, F. and Pehlivan, E. (2007).  Sorption of Cr(III) onto chelating b-DAEG–sporopollenin and CEP–sporopollenin resins. Bioresource Technology,  98: 904-911.

5.       Gurten, A. A Ucan, M. Abdullah, M. I. and Ayar, A. (2006) Effect of the temperature and mobile phase composition on the retention behavior of nitro anilines on ligand exchange stationary phase. Journal of Hazardous Materials, B135: 53-57.

6.       Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68: 167-182.

7.       Hernández, M. V., Nava, R., Acosta-Silva, Y. J., Macías-Sánchez, S. A., Pérez-Bueno, J. J., Pawelec, B. (2012). Adsorption of lead(II) on SBA-15 mesoporous molecular sieve functionalized with−NH2groups. Microporous Mesoporous Materials, 160: 133-142.

8.       Akpor, O. B.  (2014). Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Advances Bioscience and Bioengineering, 2: 37.

9.       Kyzas, G. Z. and Deliyanni, E. A. (2013). Mercury(II) removal with modified magnetic chitosan adsorbents. Molecules, 18: 6193-6214.

10.    Singh, R., Singh, S., Parihar, P., Singh, V. P. and Prasad S. M. (2015). Arsenic contamination consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, 112: 247-270.

11.    Sari, A., Mendil, D., Tuzen, M. and Soylak, M. (2008).  Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 144: 1-9.

12.    Waalkes, M. P. (2003). Cadmium carcinogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 533: 107-120.

13.    Filipiˇc, M. (2012). Mechanisms of cadmium induced genomic instability. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 733: 69-77.

14.    Anwar, J. Shafique, U. Salman, M. and Memoona, M. (2009). Adsorption study of cadmium(II) and lead(II) on radish peels. Journal of Scientific Research, 39: 29-34.

15.    Naseem, R. and Tahir, S. S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35:3982-3986.

16.    Wang, X. Qu, R. Wei, Z. Yang, X.  and Wang, Z. (2014). Effect of water quality on mercury toxicity to Photobacterium phosphoreum: model development and its application in natural waters. Ecotoxicology and Environmental Safety, 104: 231-238.

17.    Sieger, F. A. S., Silva, G. D., Ardila, G. P. and García, R. G. (2012). Mercury chronictoxicity might be associated to some cases of hydrocephalus in adult humans? Medical Hypotheses. 79: 13-16.

18.    Selvi, K. (2001). Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresource Technology, 80: 87-89.

19.    Kumar, P. A.  Ray, M. and Chakraborty, S. (2007). Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. Journal of Hazardous Material, 143: 24-32.

20.    Mohod, C. V. and Dhote, J. (2013). Review of heavy metals in drinking water and their effect on human health. The International Journal of Innovative Research in Science, Engineering and Technology, 2: 2992-2996.

21.    World Health Organization, WHO (2011). Guidelines for Drinking-water Quality-4th edition, 1–541.

22.    Ministry of health Malaysia, Engineering Services Division. (2010). Drinking water quality surveillance program, drinking water quality standards. Access from http://kmam.moh.gov.my/ public-user/drinking-water-quality-standard.html. [Accessed 21/04/2019].

23.    Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4: 361-377.

24.    Khraisheh, M. A., Al-degs, Y. S., and Mcminn, W. A. (2004). Remediation of wastewater containing heavy metals using raw and modified diatomite. Chemical Engineering Journal, 99(2): 177-184.

25.    Ayodele, A. and Idris, A. (2018). Chemical precipitation approach to the removal of heavy hetals from wastewater for discharge into sanitary sewerage. United Journal of Chemistry, 1: 167-171.

26.    Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J., and Huang, Z.  (2018). Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering, 26: 289-300

27.    Kurniawan, T. A., Chan, G. Y. S., Lo, W. H. and Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118: 83-98.

28.    Ku, Y. and Jung, I. (2001). Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Research, 35: 135-142.

29.    Mirbagheri, S. A. and Hosseini, S. N. (2005). Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination, 171: 85-93.

30.    Aziz, H. A., Adlan, M. N. and Ariffin, K. S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu andCr(III)) removal from water in Malaysia: Post treatment by high quality limestone, Bioresource Technology, 99: 1578-1583.

31.    Maralmaa, B., Erdenechimeg, D., Koichiro, S. and Yoshihiro, S. (2018). Removal and recovery of heavy metals from industrial wastewater by precipitation and foam separation using lime and casein. Journal of Environmental Science and Technology, 11 (1): 1-9.

32.    Zewail, T. M. and Yousef, N. S. (2015). Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alexandria Engineering Journal, 54: 83-90.

33.    Abo-Farha, S. A., Abdel-Aal, A. Y., Ashour, I. A. and Garamon, S. E. (2009). Removal of some heavy metal cations by synthetic resin purolite C100. Journal of Hazardous Materials, 169: 190-194.

34.    Rudnicki, P., Hubicki, Z. and Kołodyńska, D. (2014). Evaluation of heavy metal ions removal from acidic wastewater streams. Chemical Engineering Journal, 252: 362-373.

35.    Gurnule, W. B. and Dhote, S. S. (2012). Preparation, characterization and chelating ion-exchange properties of copolymer resin derived from 2,4-dihydroxy benzoic acid, ethylene diamine and formaldehyde. Der Pharma Chemica, 4: 791-799.

36.    Lin, L. and Juang, R. (2007). Ion-exchange kinetics of Cu(II) and Zn(II) from aqueous solutions with two chelating resins. Chemical Engineering Journal, 132: 205-213.

37.    Agnieszka, B., Monika, O. N. and Stanisława, S. R. (2016). Removal of lead, cadmium and copper ions from aqueous solutions by using ion exchange resin C-160. Mineral Resources Management, 32(4): 129-140.

38.    Ríos C. A., Williams C. D. and Roberts C. L. (2008). Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. Journal of Hazardous Materials, 156: 23–35.

39.    Motsi, T. Rowson, N. A. and Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92: 42-48.

40.    Alvarez, A. E., Garcıa, S. A. and Querol, X. (2003). Purification of metal electroplating wastewaters using zeolites. Water Research, 37:4855-4862.

41.    Yazan, T. and Suhail, S. (2017). The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Applied Water Science, 7:2021-2028.

42.    Erdem, E., Karapinar, N. and Donat, R.  (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280: 309-314.

43.    Kragovi´c, M., Dakovi´c, A., Markovi´c, M., Krsti´c, J., Gatta, G.D. and Rotiroti, N. (2013).Characterization of lead sorption by the natural and Fe(III)-modified zeolite. Applied Surface Science, 283: 764-774.

44.    Kragovi´c, M., Dakovi´c, A., Sekuli´c, Ž., Trgo, M., Ugrina, M., Peri´c, J. and Gatta, G. D. (2012). Removal of lead from aqueous solutions by using the natural and Fe(III)-modified zeolite. Applied Surface Science, 258: 3667-3673.

45.    Kragovi´c, M., Pašali´c, S., Markovi´c, M., Petrovi´c, M., Nedeljkovi´c, B., Momˇcilovi´c, M. and Stojmenovi´c, M. (2018). Natural and modified zeolite-alginate composites. Application for removal of heavy metal cations from contaminated water solutions. Minerals, 8(11): 2-16.  

46.    Parag, S., Vikal, G. and Ruchi, K. (2010). Synthesis of zeolite from fly ash and removal of heavy metal ions from newly synthesized zeolite. E-Journal of Chemistry, 7(4): 1200-1205

47.    Lu, X., Wang, F., Li, X., Shih, K. and Zeng, E. Y. (2016). Adsorption and thermal stabilization of Pb2+ and Cu2+ by zeolite. Industrial Engineering Chemistry Research, 55: 8767-8773. 

48.    Farooq, U., Kozinski, J. A., Khan, M. A. and Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents − A review of the recent literature. Bioresource Technology, 101: 5043-5053.

49.    Sivarajasekar, N. and Baskar, R. (2019). Adsorption of basic magenta II onto H2SO4 activated immature Gossypium hirsutum seeds: kinetics, isotherms, mass transfer, thermodynamics and process design.  Arabian Journal of Chemistry, 12(7): 1322-1337.

50.    Ruparelia, J. P., Duttagupta, S. P., Chatterjee, A. K. and Mukherji, S. (2008). Potential of carbon nano materials for removal of heavy metals from water. Desalination, 232: 145-156.

51.    Tawabini, B., Al-Khaldi, S., Atieh, M. and Khaled, M. (2010). Removal of mercury from water by multi-walled carbon nanotubes. Water Science and Technology, 61: 591-598.

52.    Pyrzynska K. and Bystrzejewski M. (2010). Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surfaces A, 362: 102-109.

53.    Sall, M. L., Diaw, A. D., Sall, D. G., Biraud, A. C., Oturan, N., Oturan, M. A., Fourdrin, C., Huguenot, D. and Aaron, J. J. (2018). Removal of lead and cadmium from aqueous solutions by using 4-amino-3-hydroxynaphthalene sulfonic acid-doped polypyrrole films. Environmental Science and Pollution Research, 25: 8581-8591.

54.    Moradi, A., Moghadam, P. N., Hasanzadeh, R., Sillanpaa, M. (2017). Chelating magnetic nano composite for the rapid removal of Pb(II) ions from aqueous solutions: characterization, kinetic, isotherm and thermodynamic studies. RSC Advances. 7: 433-448.

55.    Sao, K., Pandey, M., Pandey, P. K. and Khan, F. (2017). Highly efficient biosorptive removal of lead from industrial effluent. Environmental Science and Pollution Research, 24: 18410-18420.

56.    Bulgariu, D. and Bulgariu, L. (2016). Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: batch and column studies. Journal of Cleaner Production, 112: 4525-4533.

57.    Zuo, W. Q.  Chen, C.  Cui, H. J.  and Fu, M. L. (2017). Enhanced removal of Cd(II) from aqueous solution using CaCO3 nanoparticle modified sewage sludge biochar.  RSC Advances, 7: 16238-16243. 

58.    Sharma, R., Sarswat, A., Junior, C. U. P. and Mohan, D. (2017). Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. RSC Advances, 7: 8606-8624.

59.    Zha, R., Shi, T., Zhang, Z., Xu, D., Jianga, T. and Zhang, M. (2017). Quasi-reverse-emulsion-templated approach for a facile and sustainable environmental remediation for cadmium. RSC Advances, 7: 6345-6357. 

60.    Luo, M., Lina, H., Lia, B., Donga, Y., Hea, Y. and Wanga, L. (2018). A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresource Technology, 259: 312-318.

61.    Tang, C.  Shu, Y.  Zhang, R. Li, X. Song, J. Li, B. Zhang, Y.  Oua, D. (2017). Comparison of the removal and adsorption mechanisms of cadmium and lead from aqueous solution by activated carbons prepared from Typha angustifolia and Salix matsudana.  RSC Advances, 7: 16092-16103.

62.    Ma, L., Wei1, Q., Chen, Y., Song, Q. Sun, C. Z. and Wang, G. (2018). Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI. Royal Society Open Science, 5: 171051.

63.    Chen, G. and Shi, L. (2017). Removal of Cd(II) and Pb(II) ions from natural water using a low-cost synthetic mineral: Behavior and mechanisms, RSC Advances, 7: 43445-43454.   

64.    Sutirman, Z. A., Sanagi, M. M., Abd Karim, K. J. and Wan Ibrahim, W. A. (2016). Preparation of methacrylamide-functionalized crosslinked chitosan by free radical polymerization for the removal of lead ions. Carbohydrate Polymer, 151: 1091-1099.

65.    Gabris, M. A., Jume, B. H., Rezaali, M., Syed, S. and Nodeh, H. R. (2018). Novel magnetic graphene oxide functionalized cyanopropyl nanocomposite as an adsorbent for the removal of Pb(II) ions from aqueous media: equilibrium and kinetic studies. Environmental Science Pollution Research, 25(27): 27122-27132.

66.    Gao, T., Yu, J., Zhou, Y. and Jiang, X. (2017). The synthesis of graphene oxide functionalized with dithiocarbamate group and its prominent performance on adsorption of lead ions, Journal of Taiwan Institute of Chemical Engineering, 71: 426-432.

67.    Tan, P., Sun, J., Hu, Y. Y., Fang, Z., Bi Q., Chen, Y. C. and Cheng, J. H. (2015). Adsorption of Cu(2+), Cd(2+) and Ni(2+) from aqueous single metal solutions on graphene oxide membranes. Journal of Hazardous Material, 297: 251-260.

68.    Nuri, U. and Mustafa E. (2006). Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. Journal of Hazardous Materials, B136: 272-280.

69.    Murat, S. D., Harikishore, K. R. and Berkant, K. (2014). Biosorption properties of pretreated sporopollenin biomass for lead(II) and copper(II): Application of response surface methodology. Ecological Engineering, 68: 200-208.

70.    Nuri, U. and Mustafa E. (2007). Removal of heavy metal ions by using dithiocarbamated-sporopollenin. Separation and Purification Technology, 52: 461-469.

71.    Sener, M., Kayana, B., Akaya, S., Zmenb, B. G. and Kalderisc D. (2016). Fe-modified sporopollenin as a composite biosorbent for the removal of Pb2+ from aqueous solutions. Desalination and Water Treatment, 57: 28294-28312.

72.    Ahmad N. F., Kamboh M. A., Nodeh H. R., Abd Halim S. N. and Mohamad S. (2017).  Synthesis of piperazine functionalized magnetic sporopollenin: A new organic-inorganic hybrid material for the removal of lead(II) and arsenic(III) from aqueous solution. Environmental Science and Pollution Research,  24: 21846 -21858.

73.    Ersoz, M., Pehlivan, E., Dunkan, H.J., Yildiz, S. and Pehlivan, M. (1995). Ion exchange equilibria of heavy metals in aqueous solution in aqueous solution on new chelating resins of sporopollenin.  Reactive Polymers, 24: 195-202.

74.    Idris S. and Gulsin A. (2015) Chitosan/sporopollenin microcapsules: Preparation, characterization and application in heavy metal removal. International Journal of Biological Macromolecules, 75: 230-238.

75.     Çimen, A.,  Bilgiç, A.,  Kursunlu, A. N.,  Gübbük, I. H. and Uçan, H. I. (2014). Adsorptive removal of Co(II), Ni(II), and Cu(II) ions from aqueous media using chemically modified sporopollenin of Lycopodium clavatum as novel biosorbent.  Desalination and Water Treatment, 52: 4837-4847.

76.    Gubbuk, I. H. (2011). Isotherms and thermodynamics for the sorption of heavy metal ions onto functionalized sporopollenin. Journal of Hazardous Materials, 186: 416-422.

77.    Gubbuk, I. H., Gürfidan, L., Serkan, E. and Yilmaz, M. (2012). Surface modification of sporopollenin with calixarene derivative, characterization and application for metal removal. Water Air Soil Pollution, 223: 2623-2632.

78.    Sayin, S., Gubbuk, I. H. and Yilmaz, M. (2013). Preparation of calix[4]arene-based sporopollenin and examination of its dichromate sorption ability. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 75:111-118.

79.    Hassan, A. M, Wan Ibrahim, W. A., Bakar M. B, Sanagi, M. M., Sutirman, Z. A, Nodeh, H. R and Mokhter M. A. (2020). New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment. Journal of Environmental Management, 253: 109658.

80.    Grahame, M., Andrew, N. B., Alberto, D. T., Stephen L. A. and Thozhukat, S. (2015). Sporopollenin, the least known yet toughest natural biopolymer. Frontiers in Materials, 2: 66.

81.    Amro, K. F. D., Elham, M. A., Salwa, A. A. and Mai, M. R. (2016). Fabrication and characterisation of novel natural Lycopodium clavatum sporopollenin microcapsules loaded in-situ with nano-magnetic humic acid-metal complexes. Journal of Encapsulation and Adsorption Sciences, 6: 109-131.