Malaysian Journal of Analytical Sciences Vol 24 No 3 (2020): 330 - 338

 

 

 

 

SYNTHESIS AND CHARACTERIZATION OF CATALYTIC POLYMER- CLAY FILM FOR TREATMENT OF 17α-ETHINYLESTRADIOL

 

(Sintesis dan Pencirian Filem Polimer-Tanah Liat dengan Pemangkin untuk Rawatan 17α-Etinilestradiol)

 

Nur Khairunnisa Nazri, Nabilah Ismail1*, Mohd Aidil Adhha Abdullah1, Fatimah Hashim1, Leonard James Wright2

 

1Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Centre of Green Chemical Sciences,

University of Auckland, 23 Symonds St, Private Bag 92019, Auckland, New Zealand

 

*Corresponding author:  nabilah.i@umt.edu.my

 

 

Received: 20 November 2019; Accepted: 5 April 2020; Published:  9 June 2020

 

 

Abstract

Synthetic estrogen such as 17α-ethinylestradiol (EE2) is considered as one of the pharmaceuticals found in waterways worldwide usually due to human utilization and excretion into wastewater treatment system. In this study, catalytic polymer-clay film was used to treat EE2 in the contaminated water by oxidizing the pollutant. Polychloromethylstyrene was synthesized along with the clay cloisite to form films that can anchor catalyst Iron-tetra amido microcylic ligand (Fe-TAML). Fe-TAML works efficiently with hydrogen peroxide to activate the iron to higher oxidation state for a film performance. Polymer-clay was then casted, cured, cross-linked and functionalized to form a film that can bind the catalyst into it. Characterization of the films was done using Fourier Transform Infrared (FTIR) to determine the presence of the functional group; preliminary analysis of oxidation study was carried out using UV-Vis Spectroscopy. Furthermore, the toxicity of the oxidized solution of EE2 after undergoing oxidation with catalytic polymer-clay film was investigated using Acanthamoeba sp. to determine its toxicity towards the environment. The results of preliminary oxidation study showed the performance of film in oxidizing the contaminant and the result of toxicity study using MTT assay shows more than 70% of viability of Acanthamoeba sp. which indicated that the film was less toxic towards the environment. Hence, this film has high potential for solving the problems of contaminated water.

 

Keywords:  ethinylestradiol, polychloromethylstyrene, Fe-TAML, cloisite, catalytic polymer-clay

 

Abstrak

Estrogen sintetik yang dikenali sebagai 17α-etinilestradiol (EE2) adalah salah satu farmaseutikal yang terdapat dalam saluran air di seluruh dunia kebiasaannya disebabkan penggunaan oleh manusia dan perkumuhan ke dalam sistem rawatan air sisa. Dalam kajian ini, filem polimer-tanah liat pemangkin digunakan untuk merawat EE2 dalam air yang tercemar dengan menumpukan bahan pencemar dan mengoksida bahan tersebut. Poliklorometilsterina di sintesis bersama dengan tanah liat cloisite untuk membentuk filem-filem yang boleh melekatkan pemangkin ferum ligan tetra amido mikrosiklik (Fe-TAML). Fe-TAML berfungsi cekap dengan hidrogen peroksida untuk mengaktifkan ferum kepada keadaan pengoksidaan yang lebih tinggi untuk prestasi filem. Polimer-tanah liat kemudian diacuankan, dirawat, disilangkan dan difungsikan untuk membentuk sebuah filem yang boleh mengikat pemangkin kepadanya. Pencirian filem dilakukan dengan menggunakan spektroskopi inframerah transformasi Fourier (FTIR) untuk menentukan kehadiran  kumpulan berfungsi. Tambahan lagi, kajian ketoksikan EE2 yang teroksida setelah menjalani pengoksidaan dengan filem polimer-tanah liat pemangkin telah disiasat menggunakan Acanthamoeba sp. untuk menentukan ketoksikannya terhadap alam sekitar. Hasil kajian ketoksikan menggunakan pengujian MTT menunjukkan lebih dari 70% ia bertahan dan menujukkan filem tersebut kurang toksik terhadap alam sekitar. Oleh itu, filem ini mempunyai potensi yang tinggi untuk menyelesaikan masalah berkaitan air tercemar.

 

Kata kunci:  ethinillestradiol, poliklorometilsterina, Fe-TAML, cloisite, pemangkin polimer-tanah liat

 


References

1.        Johnson, A. C., Dumont, E., Williams, R. J., Oldenkamp, R., Cisowska, I. and Sumpter, J. P. (2013). Do concentrations of ethinylestradiol, estradiol, and diclofenac in European rivers exceed proposed EU environmental quality standards? Environmental Science & Technology, 47(21): 12297-12304.

2.        Mills, M. R., Arias-Salazar, K., Baynes, A., Shen, L. Q., Churchley, J., Beresford, N., Gayathri, C., Gil, R. R., Kanda, R., Jobling, S. and Collins, T. J. (2015). Removal of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment. Scientific Reports5: 10511.

3.        Liu, Z. H., Lu, G. N., Yin, H., Dang, Z. and Rittmann, B. (2015). Removal of natural estrogens and their conjugates in municipal wastewater treatment plants: A critical review. Environmental Science & Technology, 49(9): 5288-5300.

4.        Kostich, M., Flick, R. and Martinson, J. (2013). Comparing predicted estrogen concentrations with measurements in US waters. Environmental Pollution, 178: 271-277.

5.        De Mes, T., Zeeman, G. and Lettinga, G. (2005). Occurrence and fate of estrone, 17β-estradiol and 17α-ethynylestradiol in STPs for domestic wastewater. Reviews in Environmental Science and Biotechnology, 4(4): 275.

6.        Lim, Y. L., Morad, N., Lalung, J., Chan, S. Y. and Bakar, S. A. A. (2016). Isolation and identification of 17α-ethinylestradiol-degrading bacterial strains from POME and cow dung. International Journal of Environmental Science and Development, 7(12): 881.

7.        Desbrow, C. E. J. R., Routledge, E. J., Brighty, G. C., Sumpter, J. P. and Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science & Technology, 32(11): 1549-1558.

8.        Körner, W., Spengler, P., Bolz, U., Schuller, W., Hanf, V. and Metzger, J. W. (2001). Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 2. biological analysis. Environmental Toxicology and Chemistry: An International Journal, 20(10): 2142-2151.

9.        Snyder, S. A., Villeneuve, D. L., Snyder, E. M. and Giesy, J. P. (2001). Identification and quantification of estrogen receptor agonists in wastewater effluents. Environmental Science & Technology, 35(18): 3620-3625.

10.    Hultman, M. T., Song, Y. and Tollefsen, K. E. (2015). 17α-ethinylestradiol (EE2) effect on global gene expression in primary rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 169: 90-104.

11.    Snyder, S. A., Westerhoff, P., Yoon, Y. and Sedlak, D. L. (2003). Pharmaceuticals, personal care products, and endocrine disruptors in water: Implications for the water industry. Environmental Engineering Science, 20(5): 449-469.

12.    Scala-Benuzzi, M. L., Takara, E. A., Alderete, M., Soler-Illia, G. J., Schneider, R. J., Raba, J. and Messina, G. A. (2018). Ethinylestradiol quantification in drinking water sources using a fluorescent paper based immunosensor. Microchemical Journal, 141: 287-293.

13.    De Wit, M., Keil, D., van der Ven, K., Vandamme, S., Witters, E. and De Coen, W. (2010). An integrated transcriptomic and proteomic approach characterizing estrogenic and metabolic effects of 17α-ethinylestradiol in zebrafish (Danio rerio). General and Comparative Endocrinology, 167(2): 190-201.

14.    Bhandari, R. K., Deem, S. L., Holliday, D. K., Jandegian, C. M., Kassotis, C. D., Nagel, S. C., Tillitt, D. E., vom Saal, F. S. and Rosenfeld, C. S. (2015). Effects of the environmental estrogenic contaminants bisphenol a and 17α-ethinylestradiol on sexual development and adult behaviors in aquatic wildlife species. General and Comparative Endocrinology, 214: 195-219.

15.    Caldwell, D. J., Mastrocco, F., Anderson, P. D., Länge, R. and Sumpter, J. P. (2012). Predicted‐no‐effect concentrations for the steroid estrogens estrone, 17β‐estradiol, estriol, and 17α‐ethinylestradiol. Environmental Toxicology and Chemistry, 31(6): 1396-1406.

16.    Jobling, S., Coey, S., Whitmore, J. G., Kime, D. E., Van Look, K. J. W., McAllister, B. G., Beresford, N., Henshaw, A. C., Brighty, G., Tyler, C. R. and Sumpter, J. P. (2002). Wild intersex roach (Rutilus rutilus) have reduced fertility. Biology of Reproduction, 67(2): 515-524.

17.    Harris, C. A., Hamilton, P. B., Runnalls, T. J., Vinciotti, V., Henshaw, A., Hodgson, D., Coe, T. S., Jobling, S., Tyler, C. R. and Sumpter, J. P. (2010). The consequences of feminization in breeding groups of wild fish. Environmental Health Perspectives, 119(3): 306-311.

18.    Jobling, S., Williams, R., Johnson, A., Taylor, A., Gross-Sorokin, M., Nolan, M., Tyler, C.R., van Aerle, R., Santos, E. and Brighty, G. (2005). Predicted exposures to steroid estrogens in UK rivers correlate with widespread sexual disruption in wild fish populations. Environmental Health Perspectives, 114 (Suppl 1): 32-39.

19.    Shen, L. Q., Beach, E. S., Xiang, Y., Tshudy, D. J., Khanina, N., Horwitz, C. P., Bier, M.E. and Collins, T. J. (2011). Rapid, biomimetic degradation in water of the persistent drug sertraline by TAML catalysts and hydrogen peroxide. Environmental Science & Technology, 45(18): 7882-7887.

20.    Gupta, S. S., Stadler, M., Noser, C. A., Ghosh, A., Steinhoff, B., Lenoir, D., Horwitz, C. P., Schramm, K.W. and Collins, T. J. (2002). Rapid total destruction of chlorophenols by activated hydrogen peroxide. Science, 296(5566): 326-328.

21.    Kundu, S., Chanda, A., Khetan, S. K., Ryabov, A. D. and Collins, T. J. (2013). TAML activator/peroxide-catalyzed facile oxidative degradation of the persistent explosives trinitrotoluene and trinitrobenzene in micellar solutions. Environmental Science & Technology, 47(10): 5319-5326.

22.    Länge, R., Hutchinson, T. H., Croudace, C. P., Siegmund, F., Schweinfurth, H., Hampe, P., Panter, G.H. and Sumpter, J. P. (2001). Effects of the synthetic estrogen 17α‐ethinylestradiol on the life‐cycle of the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry: An International Journal, 20(6): 1216-1227.

23.    Shappell, N. W., Vrabel, M. A., Madsen, P. J., Harrington, G., Billey, L. O., Hakk, H., Larsen, G. L., Beach, E. S., Horwitz, C. P., Ro, K.  and Hunt, P. G. (2008). Destruction of estrogens using Fe-TAML/peroxide catalysis. Environmental Science & Technology42(4): 1296-1300.

24.    George, P. (1953). The chemical nature of the second hydrogen peroxide compound formed by cytochrome C peroxidase and horseradish peroxidase. Titration with reducing agents. Biochemical Journal, 54(2): 267.

25.    Ellis, W. C., Tran, C. T., Roy, R., Rusten, M., Fischer, A., Ryabov, A. D., Blumberg, B. and Collins, T. J. (2010). Designing green oxidation catalysts for purifying environmental waters. Journal of the American Chemical Society, 132(28): 9774-9781.

26.    Alum, A., Yoon, Y., Westerhoff, P. and Abbaszadegan, M. (2004). Oxidation of bisphenol A, 17β‐estradiol, and 17α‐ethynyl estradiol and byproduct estrogenicity. Environmental Toxicology: An International Journal, 19(3): 257-264.

27.    Balsiger, H. A., de la Torre, R., Lee, W.-Y. and Cox, M. B. (2010). A four-hour yeast bioassay for the direct measure of estrogenic activity in wastewater without sample extraction, concentration, or sterilization. Science of The Total Environment. 408(6): 1422-1429.

28.    Barr, W. J., Yi, T., Aga, D., Acevedo, O. and Harper, W. F. (2011). Using electronic theory to identify metabolites present in 17α-ethinylestradiol biotransformation pathways. Environmental Science & Technology, 46(2): 760-768.

29.    Boone, A. J., Chang, C. H., Greene, S. N., Herz, T. and Richards, N. G. J. (2003). Modeling the spin-dependent properties of open-shell Fe(III) - containing systems: towards a computational description of nitrile hydratase. Coordination Chemistry Reviews 238, 291-314.

30.    Alexandre, M. and Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: Reports, 28(1-2): 1-63.

31.    Strawhecker, K. E. and Manias, E. (2000). Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites. Chemistry of Materials, 12(10): 2943-2949.

32.    Koo, C. M., Ham, H. T., Choi, M. H., Kim, S. O. and Chung, I. J. (2003). Characteristics of polyvinylpyrrolidone-layered silicate nanocomposites prepared by attrition ball milling. Polymer44(3): 681-689.

33.    Giannelis, E. P. (1996). Polymer layered silicate nanocomposites. Advanced Materials, 8(1): 29-35.

34.    LeBaron, P. C., Wang, Z. and Pinnavaia, T. J. (1999). Polymer-layered silicate nanocomposites: An overview. Applied Clay Science, 15(1-2): 11-29.

35.    Messersmith, P. B. and Giannelis, E. P. (1995). Synthesis and barrier properties of poly (ε‐caprolactone) ‐layered silicate nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry, 33(7): 1047-1057.

36.    Yano, K., Usuki, A. and Okada, A. (1997). Synthesis and properties of polyimide‐clay hybrid films. Journal of Polymer Science Part A: Polymer Chemistry, 35(11): 2289-2294.

37.    Ke, Z. and Yongping, B. (2005). Improve the gas barrier property of PET film with montmorillonite by in situ interlayer polymerization. Materials Letters, 59(27): 3348-3351.

38.    Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2): 55-63.