Malaysian Journal of Analytical Sciences Vol 24 No 3 (2020): 320 - 329

 

 

 

 

SYNTHESIS AND CHARACTERIZATION OF OXYGEN-DOPED MESOPOROUS GRAPHITIC CARBON NITRIDE USING  NANODISC SILICA FROM RICE HUSK ASH AS HARD TEMPLATE

 

(Sintesis dan Pencirian Grafitik Karbon Nitrida Berliang Meso yang di Dop dengan Oksigen di Atas Nanocakera Silika dari Abu Sekam Padi Sebagai Templat Keras)

 

Shittu Fatimah Bukola1, Mohammad Anwar Mohamed Iqbal1*, Farook Adam1, Mohamad Nasir Mohamad Ibrahim1, Nur Ruzaina Abdul Rahman2, Srimala Sreekantan2, Noor Hana Hanif Abu Bakar1, Mohd Hazwan Hussin1,

Hariy Pauzi3

 

1School of Chemical Sciences,

Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia

2School of Materials and Mineral Resources Engineering

3 Science and Engineering Research Centre (SERC)

Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Penang, Malaysia

 

*Corresponding author:  anwariqbal@usm.my

 

 

Received: 20 November 2019; Accepted: 5 April 2020; Published:  9 June 2020

 

 

Abstract

Oxygen-doped mesoporous carbon nitride (O-MCN) was successfully synthesized through a polymerization reaction between urea and glucose using nanodisc silica (NDS) from rice husk ash as a hard template. The presence of oxygen within the framework of the MCN was confirmed using X-ray photoelectron spectroscopy (XPS) and Fourier-transformed infrared (FTIR) analyses. The scanning electron microscope (SEM) analysis indicates the existence of irregular spherical pores on the surface of O-MCN mimicking the surface morphology of the NDS. The Brunauer–Emmett–Teller (BET) surface area of the O-MCN (145 m2g-1) was similar to NDS (152 m2g-1). However, the Barrett, Joyner, and Halenda (BJH) pore size distribution of the O-MCN (48- 84 Å) was smaller than the NDS (36-203 Å). The bandgap energy of the O-MCN was calculated to be 2.53 eV. The narrow bandgap energy suggests that the O-MCN has a high potential to be used as a photocatalyst under visible light irradiation.

 

Keywords:    mesoporous carbon nitride, oxygen-doped mesoporous carbon nitride, rice husk, rice husk ash, photocatalyst

 

Abstrak

Karbon nitrida berliang meso mengandungi oksigen (O-MCN) berjaya disintesis melalui tindak balas pempolimeran antara urea dan glukosa menggunakan nanocakera silika (NDS) dari abu sekam padi sebagai templat keras. Kehadiran oksigen dalam kekisi MCN disahkan melalui analisis spektroskopi fotoelektron sinar-X (XPS) dan inframerah transformasi Fourier (FTIR). analisis mikroskop elektron imbasan (SEM) menunjukkan kewujudan liang sfera tidak sekata pada permukaan O-MCN yang menyerupai morfologi permukaan NDS. Luas permukaan Brunauer–Emmett–Teller (BET) O-MCN (145 m2g-1) sama dengan NDS (152 m2g-1). Walau bagaimanapun, taburan saiz liang Barrett, Joyner, and Halenda (BJH) O-MCN (48- 84 Å) adalah lebih kecil berbanding NDS (36-203 Å). Tenaga sela jalur O-MCN dikira sebagai 2.53 eV. Tenaga sela jalur yang sempit mencadangan O-MCN mempunyai potensi yang tinggi untuk digunakan sebagai fotokatalis dibawah iradiasi cahaya nampak.

 

Kata kunci: karbon nitrida berliang meso, karbon nitrida berliang meso mengandungi oksigen, sekam padi, abu sekam padi, fotopemangkin

 

References

1.       Ajayan, S., Lakhi, K. S, Dae-Hwan, Al-Bahily, K. Cha, W. Viswanathan, B. and Choy, J. H. (2017). Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chemical Society Reviews, 46: 72-101.

2.       Luo, L., Zhang, A., Janik, M. J., Li, K., Song, C. and Guo, X. (2017). Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation. Applied Surface Science, 396: 78-84.

3.       Lee, S. C., Lintang, H. O. and Yuliati, L. (2012). A urea precursor to synthesize carbon nitride with mesoporosity for enhanced activity in the photocatalytic removal of phenol. Chemistry-An Asian Journal, 7(9): 2139-2144.

4.       Zhao, Z., Dai, Y., Lin, J. and Wang, G. (2014). Highly-ordered mesoporous carbon nitride with ultrahigh surface area and pore volume as a superior dehydrogenation catalyst. Chemistry of Materials, 26(10): 3151-3161.

5.       Dong, G., Ai, Z. and Zhang, L. (2014). Efficient anoxic pollutant removal with oxygen functionalized graphitic carbon nitride under visible light. RCS Advances, 4: 5553-5560.

6.       Zhang, B., Li, X. J., Zhao, Y., Song, H. and Wang, H. (2019). Facile synthesis of oxygen doped mesoporous graphitic carbon nitride with high photocatalytic degradation efficiency under simulated solar irradiation. Colloids and Surfaces: A, 580: 123736.

7.       Adam, F., Nelson, J. and Iqbal, A. (2012). The utilization of rice husk silica as a catalyst: Review and recent progress. Catalysis Today, 190(1): 2-14.

8.       Lu, P. and Hsieh, Y. (2012). Highly pure amorphous silica nano-disks from rice straw. Powder Technology, 225: 149-155.

9.       Ghorbani, F., Sanati, A. M. and Maleki, M. (2015). Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environmental Studies of Persian Gulf, 2(1): 56- 65.

10.    Hu, J., Zhang, Z., Wang, F., Zheng, S., Cai, J., Qin, J., Liu, W., Liang, L. and Jiang, X (2016). A controllable synthesis of nitrogen-doped mesoporous carbon supported MoS2 catalysts for hydrodesulfurization of thiophene. RSC Advances, 6(103): 101544-101551.

11.    Deng, Q. F., Liu, L., Lin, X. Z., Du, G., Y Liu, Y. and Yuan, Z. Y. (2012). Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chemical Engineering Journal, 203: 63-70.

12.    Sung. S. P., Sang-Wook, C., Chunfeng, X., Dongyuan, Z., and Chang-Sik, H. (2011). Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent. Journal of Materials Chemistry, 21: 10801-10807.

13.    Wangsoo, C., In, Y. K., Jang, M. L., Sungho, K., Kavitha, R., Kothandam, G., Selvarajan, P., Siva, U. and Ajayan, V. (2019). Sulfur-doped mesoporous carbon nitride with an ordered porous structure for sodium-ion batteries. ACS Applied Materials & Interfaces, 11: 27192-27199.

14.    Chang, S., Clair, B., Ruelle,J., Beauchêne, J., Renzo, F. D., Quignard, F., Zhao, G., Yamamoto, H. and Gril, J. (2009). Mesoporosity as a new parameter for understanding tension stress generation in trees. Journal of Experimental Botany, 60(11): 3023-3030.

15.    Mousavi, M., Habibi-Yangjeh, A. and Abitorabi, M. (2016). Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. Journal of Colloid and Interface Science, 480: 218-231.

16.    Xu, H. Y., Wu, L. C., Zhao, H., Jin, L. G. and Qi, S. Y. (2015). Synergic effect between adsorption and photocatalysis of metal-free g-C3N4 derived from different precursors. PLoS One, 10(11): 1-20.

17.    Liu, J., Zhang, T., Wang, Z., Dawson, G. and Chen, W. (2011). Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. Journal of Material Chemistry, 21(38): 14398-14401.

18.    Guo, Q., Xie, Y., Wang, X., Zhang, S., Hou, T. and Lv, S. (2004). Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chemical Communications, 1: 26-27.

19.    Luo, J., Cui, Z. and Zang, G. (2013). Mesoporous metal-containing carbon nitrides for improved photocatalytic activities. Journal of Chemistry, 2013: 1-6.

20.    Muniandy, L., Adam, F., Rahman, A., Iqbal, A., Ruzaina, N. and Rahman, A. (2017). Applied surface science from melamine for the liquid phase hydroxylation of benzene and VOCs. Applied Surface Science, 398: 43-55.

21.    Nghiem, L., Tuan, A., Thi, L., Dung, K., Doan, L. and Ha, T. (2017). Preparation and characterization of nanosilica from rice husk ash by chemical treatment combined with calcination. Vietnam Journal of Chemistry, 55(4): 455-459.

22.    Kwon, K., Sa, Y. J., Cheon, J. Y. and Joo, S. H. (2012). Ordered mesoporous carbon nitrides with graphitic frameworks as metal-free, highly durable, methanol-tolerant oxygen reduction catalysts in an acidic medium. Langmuir, 28(1): 991-996.

23.    Mitra, A., Howli, P., Sen, D., Das, B. and Chattopadhyay, K. K. (2016). Cu2O/g-C3N4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies. Nanoscale, 8(45): 19099-19109.

24.    Chena, Z., Wua, Y., Wanga, Q., Wang, Z., Heb, L. Lei, Y. and Wang, Z. (2017). Oxygen-rich carbonnitrogen quantum dots as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nano fibers. Progress in Natural Science: Materials International, 27(3): 333-337.

25.    Seredych, M. and Bandosz, T. J. (2016). Nitrogen enrichment of S-doped nanoporous carbon by g-C3N4: Insight into photosensitivity enhancement. Carbon, 107: 895-906.

26.    Wei, F., Liu, Y., Zhao, H., Ren, X., Liu, J., Hasan, T., Chen, L., Li, Y. and Su, B. (2018). Oxygen selfdoped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance. Nanoscale, 4: 4515-4522.

27.    Wang, K., Wang, X., Pan, H., Liu, Y., Xu, S. and Cao, S. (2018). In situ fabrication of CDs/g-C3N4 hybrids with enhanced interface connection via calcination of the precursors for photocatalytic H2 evolution. International Journal of Hydrogen Energy, 43(1): 91-99.

28.    Kautz, A. C., Kunz, P. C., Janiak, C. and Kautz, A. C. (2016). CO-releasing molecule (CORM) conjugate systems. Dalton Transactions,45(45): 18045-18063.

29.    Li, J., Shen, B., Hong, Z. Lin, B. (2012). A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chemical Communications, 98(48): 12017-12019.

30.    Bandosz, T. J. (2016). Nitrogen-doped activated carbon-based ammonia sensors: Effect of specific surface functional groups on carbon electronic properties. ACS Sensors, 1(5): 591-599.