Malaysian
Journal of Analytical Sciences Vol 24 No 3
(2020): 422 - 435
EXPERIMENTAL
AND DENSITY FUNCTIONAL THEORY INVESTIGATION ON IMINE FORMATION USING MICROWAVE
IRRADIATION
(Penyiasatan Secara
Eksperimen dan Teori Fungsi Ketumpatan ke atas Penghasilan Imina Menggunakan
Penyinaran Gelombang Mikro)
Fatin Ilyani Nasir1,2,
Wun Fui Mark-Lee3, Yan Yi Chong1, Mohammad B. Kassim1,
Siti Aishah Hasbullah1, Douglas Philp4,
Nurul Izzaty Hassan1*
1Department of Chemical Sciences, Faculty of Science and
Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
2Analytical Biochemistry Research Centre,
Universiti Sains Malaysia, 11800 Penang, Malaysia
3Department of Basic Science and Engineering, Faculty of
Agriculture and Food Sciences,
Universiti Putra Malaysia, 97008 Bintulu, Sarawak, Malaysia
4Department of Chemistry,
Northwestern University, 2145 Sheridan Road, Evanston, IL
60208-3113, USA
*Corresponding
author: drizz@ukm.edu.my
Received: 3 April 2020;
Accepted: 10 May 2020; Published: 9 June
2020
Abstract
Four
starting materials comprising of N-(4,6-dimethylpyridin-2-yl)-4-formylbenzamide 1, 4-amino-N-(4,6-dimethylpyridin-2-yl)benzamide
2, 4-amino-2-methylbenzoic acid 3 and 4-formylbenzoic acid 4
react in a pairwise manner through the condensation reaction to give four imine
derivatives, Imine 5, 6, 7
and 8. A simple method has been
developed for the synthesis of these imine derivatives under microwave
irradiation. In addition, these compounds were synthesised also by conventional
heating procedures for comparison. All the compounds synthesised were characterised
by melting point, infrared, mass spectrometry, 1H and 13C
NMR spectroscopy. Comparison between conventional and microwave irradiation was
done by comparing total reaction time and percentage yield. The results suggest
that microwave-irradiation lead to higher yields within very short reaction
times. Compounds 1 and 2 crystallised in the orthorhombic (P212121
space group) and monoclinic (P21/c space group) crystal systems,
respectively. The nature of minimal replicator of imine 6 via autocatalytic
reaction was calculated using density functional theory (DFT) with the
combination of hybrid functional B3LYP and 6-311G(d,p) basis set. The reaction
pathway facilitated with the addition of imine 6 or imine 5 equipped with complementary recognition
sites of two carboxylic acids and two 4,6-dimethylamidopyridines were predicted
to be thermodynamically favourable.
Keywords: imine,
condensation, conventional heating, microwave irradiation, density functional
theory
Abstrak
Empat bahan bermula
terdiri daripada N-(4,6-dimetilpiridin-2-il)-4-formilbenzamida 1,
4-amino-N-(4,6-dimetilpiridin-2-il)benzamida 2, asid
4-amino-2-metilbenzoik 3 dan asid 4-formilbenzoik 4 bertindak
balas secara berpasangan melalui tindak balas kondensasi untuk menghasilkan
empat terbitan imina, imina 5, 6, 7
dan 8. Satu kaedah mudah telah
dibangunkan untuk menghasilkan terbitan imina di bawah penyinaran gelombang
mikro. Di samping itu, terbitan imina ini turut dihasilkan melalui kaedah
pemanasan konvensional sebagai perbandingan. Semua sebatian yang di sintesis
dicirikan melalui analisis takat lebur, inframerah, spektrometri jisim,
spektroskopi 1H dan 13C RMN. Perbandingan antara kaedah
konvensional dan penyinaran gelombang mikro dilakukan dengan membandingkan masa
tindak balas dan hasil peratusan. Keputusan ini mencadangkan kaedah penyinaran
gelombang mikro memberikan peratusan hasil yang lebih tinggi dalam masa tindak
balas yang singkat. Sebatian 1 dan 2 masing-masing menghablur
dalam sistem ortorombik (kumpulan ruang P212121) dan monoklinik (kumpulan ruang P21/c). Sifat replikator minimal imina 6 melalui tindak
balas autokatalitik telah dikira menggunakan teori fungsi ketumpatan (DFT) dengan
menggunakan gabungan asas fungsi hibrid B3LYP dan set asas 6-311G(d,p). Laluan
tindak balas dibantu dengan penambahan sebatian imina 6 atau imina 5
yang dilengkapi dengan tapak pengecaman, terdiri daripada dua moieti asid
karboksilik dan dua moieti 4,6-dimetilpiridina yang dijangka berada di bawah
kawalan termodinamik.
Kata kunci: imina, kondensasi, pemanasan konvensional,
penyinaran gelombang mikro, teori fungsi ketumpatan
References
1. Hawaiz, F. E., Raheem, D. J. and Samad, M. K. (2016).
Synthesis and characterization of some new azo-imine dyes and their
application. Journal of Zankoy Sulaimani,
Part A, 201(1): 18-23.
2. Sharghi, H. and Nasseri, M. A. (2003). Schiff-base
metal(II) complexes as new catalysts in the efficient, mild and regioselective
conversion of 1,2- epoxyethanes to 2-hydroxyethyl thiocyanates with ammonium
thiocyanate. Bulletin of the
Chemical Society of Japan, 76(1):
137-142.
3. Kovacic, P. and Somanathan, R. (2014). Toxicity of
imine-iminium dyes and pigments: electron transfer, radicals, oxidative stress
and other physiological effects. Journal
of Applied Toxicology, 34(8): 825-834.
4. Ke, S., Wei, Y., Yang, Z., Wang, K., Liang, Y. and
Shi, L. (2013). Novel cycloalkylthiophene–imine derivatives bearing
benzothiazole scaffold: Synthesis, characterization, and antiviral activity
evaluation. Bioorganic & Medicinal
Chemistry Letters, 23(18): 5131-5134.
5. Hania, M. M. (2009). Synthesis of some imines and
investigation of their biological activity. European
Journal of Chemistry 6(3): 629-632.
6. Silva, C. M., Silva, D. L., Modolo, L. V., Alves, R.
B., Resende, M. A., Martins, C. V. B. and Fátima, Â. (2011). Schiff bases: A
short review of their antimicrobial activities. Journal of Advanced
Research, 2(1): 1-8.
7. Mohamaed, S. S., Tamer, A. R., Bensaber, S. M., Jaeda,
M. I., Ermeli, N. B., Allafi, A. A., Mrema, I. A., Erhuma, M. Hermann, A. and
Gbaj, A. M. (2013). Design, synthesis, molecular modeling and biological
evaluation of sulfanilamide-imines derivatives as potential anticancer agents. Naunyn-Schmiedeberg’s Archives of
Pharmacology, 386(9):813-822.
8. Vazzana, A., Terranova, E., Mattioli, F. and
Sparatore, F. (2004). Aromatic Schiff bases and
2,3-disubstituted-1,3-thiazolidin4-one derivatives as anti-inflammatory agents.
ARKIVOC, 5: 364-374.
9. Sager, A. A., Abood, Z. S., El-Amary, W. M., Bensaber,
S. M., Al-Sadawe, I. A., Ermeli, N. B., Mohamed, A. B., Al-Forgany, M., Mrema,
I. A., Erhuma, M., Hermann, A. and Gbaj, A. M. (2018). Design, synthesis and
biological evaluation of some triazole schiff’s base derivatives as potential
antitubercular agents. The Open Medicinal
Chemistry Journal, 12: 48-59.
10.
Yu,
H., Shao, L. and Fang, J. (2007). Synthesis and biological activity research of
novel ferrocenyl-containing thiazole imine derivatives. Journal of Organometallic Chemistry, 692(5): 991-996.
11.
Love,
B. E. and Ren, J. (1993). Synthesis of sterically hindered imines. The Journal of Organic Chemistry, 58(20):
5556-5557.
12.
Look, G. C., Murphy,
M. M., Campbell, D. A. and Gallop, M. A. (1995). Trimethyl orthoformate: a mild
and effective dehydrating reagent for solution and solid phase imine formation.
Tetrahedron Letters 36(17): 2937-2940.
13. Flitsch, W. (1996). 8.09 – Bicyclic 5-6 systems with
one ring junction nitrogen atom: No extra heteroatom. Comprehensive Heterocyclic Chemistry II, 8: 237-248
14. Souza, F. B., Pimenta, D. C. and Stefani, H. A.
(2016). Microwave-assisted one-pot three-component synthesis of imines
1,2,3-triazoles. Tetrahedron, 57(14): 1592-1596.
15. Dallinger, D. and Kappe, C. O. (2007).
Microwave-assisted synthesis in water as solvent. Chemical Reviews, 107(6): 2563-2591.
16. Baruah, S., Fisyuk, A., Kulakov, I.V. and Puzari, A.
(2017). An atom economic acid-catalyzed synthetic method for aromatic imines. Asian Journal of Chemistry and
Pharmaceutical Sciences, 2(1): 6-9.
17. Caddick, S. and Fitzmaurice, R. (2009). Microwave
enhanced synthesis. Tetrahedron, 65: 3325-3355.
18. Del Amo, V. and Philip, D. (2010). Integrating replication-based selection
strategies in dynamic covalent systems. Chemistry-A European Journal, 16(45): 13304-13318.
19. Del Amo, V., Slawin, A. M. Z. and Philp, D. (2008).
Manipulating replication processes within a dynamic covalent framework. Organic Letters, 10(20): 4589-4592.
20. Robertson, C. C., Mackenzie, H. W., Kosikova, T. and Philp, D. (2018).
An environmentally responsive reciprocal
replicating network. Journal of the
American Chemical Society, 140(22): 6832-6841.
21. Bekdemir, Y. and Efil, K. (2014). Microwave-assisted
solvent-free synthesis of some imine derivatives. Organic Chemistry International, 2014: 1-5.
22. Becke, A. D. (1988). Density-functional
exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6): 3098-3100.
23. Becke, A. D. (1993). Density functional
thermochemistry III the role of exact exchange. Journal of Chemical Physics, 98: 5648-5652.
24. Davidson, E. R. and Feller, D. (1986). Basis set
selection for molecular calculations. Chemical
Reviews, 86(4): 681-696.
25. Hehre, W. J., Radom, L., Schleyer, P. V. R. and Pople,
J. A. (1986). Ab initio molecular orbital theory. Accounts of Chemical Research, 9: 399-406.
26. Lee, C., Yang, W. and Parr, R. (1988). Development of
the ColleSalvetti correlation energy formula into a functional of the electron
density. Physical Review B, 37(2):
785-789.
27. Mark-Lee, W. F., Chong, Y. Y., Law, K. P., Ahmad, I.
B. and Kassim, M. B. (2018). Synthesis, structure and density functional theory
(DFT) study of a rhenium(I) pyridylpyrazol complex as a potential photocatalyst
for CO2 reduction. Sains Malaysiana, 47(7): 1491-1499.
28. Mark-Lee, W. F., Rusydi, F., Minggu, L. J. and Kassim,
M. B. (2017). Bis(Bipyridyl)-Ru(II)-1-benzoyl-3-(pyridine-2-yl)-1H-pyrazole as
potential photosensitiser: Experimental and density functional theory study. Jurnal Teknologi, 79(5-3):
117-123.
29. Ochterski, J. W. (2000). Thermochemistry in Gaussian. Gaussian, Inc.:
Wallingford, CT: pp 1-19.
30. Tauber,
J., Imbri, D. and Opatz, T. (2014). Radical addition to iminium ions and
cationic heterocycles. Molecules, 19(10):
16190-16222.
31. Mark-Lee, W. F., Chong, Y. Y. and Kassim, M. B.
(2018). Supramolecular structures of rhenium(I) complexes mediated by ligand
planarity via the interplay of substituents. Acta Crystallographica Section
C, 74: 997-1006.
32. Mocilac, P., Donnelly, K. and Gallagher, J. F. (2012).
Structural systematics and conformational analyses of a 3×3 isomer grid of
fluoro-N-(pyridyl)benzamides: Physicochemical correlations, polymorphism, and
isomorphous relationships. Acta
Crystallographica Section B: Structural Science, 68(2): 189-203.
33. Sadownik, J. W., Kosikova, T. and Philp, D. (2017).
Generating system-level responses from a network of simple synthetic
replicators. Journal of the American
Chemical Society, 139(48): 17565-17573.
34. Arunan,
E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I.,
Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G.,
Legon, A. C., Mennucci, B. and Nesbitt, D. J. (2011). Definition of the
hydrogen bond (IUPAC Recommendations 2011). Pure
and Applied Chemistry 83(8): 1637-1641.