Malaysian Journal of Analytical Sciences Vol 24 No 3 (2020): 422 - 435

 

 

 

 

EXPERIMENTAL AND DENSITY FUNCTIONAL THEORY INVESTIGATION ON IMINE FORMATION USING MICROWAVE IRRADIATION

 

(Penyiasatan Secara Eksperimen dan Teori Fungsi Ketumpatan ke atas Penghasilan Imina Menggunakan Penyinaran Gelombang Mikro)

 

Fatin Ilyani Nasir1,2, Wun Fui Mark-Lee3, Yan Yi Chong1, Mohammad B. Kassim1, Siti Aishah Hasbullah1, Douglas Philp4, Nurul Izzaty Hassan1*

 

1Department of Chemical Sciences, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Analytical Biochemistry Research Centre,

Universiti Sains Malaysia, 11800 Penang, Malaysia

3Department of Basic Science and Engineering, Faculty of Agriculture and Food Sciences,

Universiti Putra Malaysia, 97008 Bintulu, Sarawak, Malaysia

4Department of Chemistry,

Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

 

*Corresponding author:  drizz@ukm.edu.my

 

 

Received: 3 April 2020; Accepted: 10 May 2020; Published:  9 June 2020

 

 

Abstract

Four starting materials comprising of N-(4,6-dimethylpyridin-2-yl)-4-formylbenzamide 1, 4-amino-N-(4,6-dimethylpyridin-2-yl)benzamide 2, 4-amino-2-methylbenzoic acid 3 and 4-formylbenzoic acid 4 react in a pairwise manner through the condensation reaction to give four imine derivatives, Imine 5, 6, 7 and 8. A simple method has been developed for the synthesis of these imine derivatives under microwave irradiation. In addition, these compounds were synthesised also by conventional heating procedures for comparison. All the compounds synthesised were characterised by melting point, infrared, mass spectrometry, 1H and 13C NMR spectroscopy. Comparison between conventional and microwave irradiation was done by comparing total reaction time and percentage yield. The results suggest that microwave-irradiation lead to higher yields within very short reaction times. Compounds 1 and 2 crystallised in the orthorhombic (P212121 space group) and monoclinic (P21/c space group) crystal systems, respectively. The nature of minimal replicator of imine 6 via autocatalytic reaction was calculated using density functional theory (DFT) with the combination of hybrid functional B3LYP and 6-311G(d,p) basis set. The reaction pathway facilitated with the addition of imine 6 or imine 5  equipped with complementary recognition sites of two carboxylic acids and two 4,6-dimethylamidopyridines were predicted to be thermodynamically favourable.

 

Keywords:  imine, condensation, conventional heating, microwave irradiation, density functional theory

 

Abstrak

Empat bahan bermula terdiri daripada N-(4,6-dimetilpiridin-2-il)-4-formilbenzamida 1, 4-amino-N-(4,6-dimetilpiridin-2-il)benzamida 2, asid 4-amino-2-metilbenzoik 3 dan asid 4-formilbenzoik 4 bertindak balas secara berpasangan melalui tindak balas kondensasi untuk menghasilkan empat terbitan imina, imina 5, 6, 7 dan 8. Satu kaedah mudah telah dibangunkan untuk menghasilkan terbitan imina di bawah penyinaran gelombang mikro. Di samping itu, terbitan imina ini turut dihasilkan melalui kaedah pemanasan konvensional sebagai perbandingan. Semua sebatian yang di sintesis dicirikan melalui analisis takat lebur, inframerah, spektrometri jisim, spektroskopi 1H dan 13C RMN. Perbandingan antara kaedah konvensional dan penyinaran gelombang mikro dilakukan dengan membandingkan masa tindak balas dan hasil peratusan. Keputusan ini mencadangkan kaedah penyinaran gelombang mikro memberikan peratusan hasil yang lebih tinggi dalam masa tindak balas yang singkat. Sebatian 1 dan 2 masing-masing menghablur dalam sistem ortorombik (kumpulan ruang P212121) dan monoklinik (kumpulan ruang P21/c). Sifat replikator minimal imina 6 melalui tindak balas autokatalitik telah dikira menggunakan teori fungsi ketumpatan (DFT) dengan menggunakan gabungan asas fungsi hibrid B3LYP dan set asas 6-311G(d,p). Laluan tindak balas dibantu dengan penambahan sebatian imina 6 atau imina 5 yang dilengkapi dengan tapak pengecaman, terdiri daripada dua moieti asid karboksilik dan dua moieti 4,6-dimetilpiridina yang dijangka berada di bawah kawalan termodinamik.

 

Kata kunci:  imina, kondensasi, pemanasan konvensional, penyinaran gelombang mikro, teori fungsi ketumpatan 

 

References

1.       Hawaiz, F. E., Raheem, D. J. and Samad, M. K. (2016). Synthesis and characterization of some new azo-imine dyes and their application. Journal of Zankoy Sulaimani, Part A, 201(1): 18-23.

2.       Sharghi, H. and Nasseri, M. A. (2003). Schiff-base metal(II) complexes as new catalysts in the efficient, mild and regioselective conversion of 1,2- epoxyethanes to 2-hydroxyethyl thiocyanates with ammonium thiocyanate. Bulletin of the Chemical  Society of Japan, 76(1): 137-142.

3.       Kovacic, P. and Somanathan, R. (2014). Toxicity of imine-iminium dyes and pigments: electron transfer, radicals, oxidative stress and other physiological effects. Journal of Applied Toxicology, 34(8): 825-834.

4.       Ke, S., Wei, Y., Yang, Z., Wang, K., Liang, Y. and Shi, L. (2013). Novel cycloalkylthiophene–imine derivatives bearing benzothiazole scaffold: Synthesis, characterization, and antiviral activity evaluation. Bioorganic & Medicinal Chemistry Letters, 23(18): 5131-5134.

5.       Hania, M. M. (2009). Synthesis of some imines and investigation of their biological activity. European Journal of Chemistry 6(3): 629-632.

6.       Silva, C. M., Silva, D. L., Modolo, L. V., Alves, R. B., Resende, M. A., Martins, C. V. B. and Fátima, Â. (2011). Schiff bases: A short review of their antimicrobial activities. Journal of Advanced Research, 2(1): 1-8.

7.       Mohamaed, S. S., Tamer, A. R., Bensaber, S. M., Jaeda, M. I., Ermeli, N. B., Allafi, A. A., Mrema, I. A., Erhuma, M. Hermann, A. and Gbaj, A. M. (2013). Design, synthesis, molecular modeling and biological evaluation of sulfanilamide-imines derivatives as potential anticancer agents. Naunyn-Schmiedeberg’s Archives of Pharmacology, 386(9):813-822.

8.       Vazzana, A., Terranova, E., Mattioli, F. and Sparatore, F. (2004). Aromatic Schiff bases and 2,3-disubstituted-1,3-thiazolidin4-one derivatives as anti-inflammatory agents. ARKIVOC, 5: 364-374.

9.       Sager, A. A., Abood, Z. S., El-Amary, W. M., Bensaber, S. M., Al-Sadawe, I. A., Ermeli, N. B., Mohamed, A. B., Al-Forgany, M., Mrema, I. A., Erhuma, M., Hermann, A. and Gbaj, A. M. (2018). Design, synthesis and biological evaluation of some triazole schiff’s base derivatives as potential antitubercular agents. The Open Medicinal Chemistry Journal, 12: 48-59.

10.  Yu, H., Shao, L. and Fang, J. (2007). Synthesis and biological activity research of novel ferrocenyl-containing thiazole imine derivatives. Journal of Organometallic Chemistry, 692(5): 991-996.

11.    Love, B. E. and Ren, J. (1993). Synthesis of sterically hindered imines. The Journal of Organic Chemistry, 58(20): 5556-5557.

12.    Look, G. C., Murphy, M. M., Campbell, D. A. and Gallop, M. A. (1995). Trimethyl orthoformate: a mild and effective dehydrating reagent for solution and solid phase imine formation. Tetrahedron Letters 36(17): 2937-2940.

13.    Flitsch, W. (1996). 8.09 – Bicyclic 5-6 systems with one ring junction nitrogen atom: No extra heteroatom. Comprehensive Heterocyclic Chemistry II, 8: 237-248

14.    Souza, F. B., Pimenta, D. C. and Stefani, H. A. (2016). Microwave-assisted one-pot three-component synthesis of imines 1,2,3-triazoles. Tetrahedron, 57(14): 1592-1596.

15.    Dallinger, D. and Kappe, C. O. (2007). Microwave-assisted synthesis in water as solvent. Chemical Reviews, 107(6): 2563-2591.

16.    Baruah, S., Fisyuk, A., Kulakov, I.V. and Puzari, A. (2017). An atom economic acid-catalyzed synthetic method for aromatic imines. Asian Journal of Chemistry and Pharmaceutical Sciences, 2(1): 6-9.

17.    Caddick, S. and Fitzmaurice, R. (2009). Microwave enhanced synthesis. Tetrahedron, 65: 3325-3355.

18.    Del Amo, V. and Philip, D. (2010). Integrating replication-based selection strategies in dynamic covalent systems. Chemistry-A European Journal, 16(45): 13304-13318.

19.    Del Amo, V., Slawin, A. M. Z. and Philp, D. (2008). Manipulating replication processes within a dynamic covalent framework. Organic Letters, 10(20): 4589-4592.

20.    Robertson, C. C., Mackenzie, H. W., Kosikova, T. and Philp, D. (2018). An environmentally responsive  reciprocal replicating network. Journal of the American Chemical Society, 140(22): 6832-6841.

21.    Bekdemir, Y. and Efil, K. (2014). Microwave-assisted solvent-free synthesis of some imine derivatives. Organic Chemistry International, 2014: 1-5.

22.    Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6): 3098-3100.

23.    Becke, A. D. (1993). Density functional thermochemistry III the role of exact exchange. Journal of Chemical Physics, 98: 5648-5652.

24.    Davidson, E. R. and Feller, D. (1986). Basis set selection for molecular calculations. Chemical Reviews, 86(4): 681-696.

25.    Hehre, W. J., Radom, L., Schleyer, P. V. R. and Pople, J. A. (1986). Ab initio molecular orbital theory. Accounts of Chemical Research, 9: 399-406.

26.    Lee, C., Yang, W. and Parr, R. (1988). Development of the ColleSalvetti correlation energy formula into a functional of the electron density. Physical Review B, 37(2): 785-789.

27.    Mark-Lee, W. F., Chong, Y. Y., Law, K. P., Ahmad, I. B. and Kassim, M. B. (2018). Synthesis, structure and density functional theory (DFT) study of a rhenium(I) pyridylpyrazol complex as a potential photocatalyst for CO2 reduction. Sains Malaysiana, 47(7): 1491-1499.

28.    Mark-Lee, W. F., Rusydi, F., Minggu, L. J. and Kassim, M. B. (2017). Bis(Bipyridyl)-Ru(II)-1-benzoyl-3-(pyridine-2-yl)-1H-pyrazole as potential photosensitiser: Experimental and density functional theory    study. Jurnal Teknologi, 79(5-3): 117-123.

29.    Ochterski, J. W. (2000). Thermochemistry in Gaussian. Gaussian, Inc.: Wallingford, CT: pp 1-19.

30.    Tauber, J., Imbri, D. and Opatz, T. (2014). Radical addition to iminium ions and cationic heterocycles. Molecules, 19(10): 16190-16222.

31.    Mark-Lee, W. F., Chong, Y. Y. and Kassim, M. B. (2018). Supramolecular structures of rhenium(I) complexes mediated by ligand planarity via the interplay of substituents. Acta Crystallographica Section C, 74: 997-1006.

32.    Mocilac, P., Donnelly, K. and Gallagher, J. F. (2012). Structural systematics and conformational analyses of a 3×3 isomer grid of fluoro-N-(pyridyl)benzamides: Physicochemical correlations, polymorphism, and isomorphous relationships. Acta Crystallographica Section B: Structural Science, 68(2): 189-203.

33.    Sadownik, J. W., Kosikova, T. and Philp, D. (2017). Generating system-level responses from a network of simple synthetic replicators. Journal of the American Chemical Society, 139(48): 17565-17573.

34.    Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. and Nesbitt, D. J. (2011). Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and Applied Chemistry 83(8): 1637-1641.