Malaysian
Journal of Analytical Sciences Vol 24 No 3
(2020): 413 - 421
STUDY OF
CONDUCTIVITY AND THERMAL PROPERTIES OF POLYANILINE DOPED WITH p-TOLUENE SULFONIC ACID
(Kajian
Pengaliran Elektrik dan Haba terhadap Polianilina di-Dopkan dengan Asid p-Toluena Sulfonik)
Muhammad Faiz
Aizamddin1, Nazreen Che Roslan1, Muhammad Asyrap
Kamarudin1, Siti Nurzatul Ikma Omar1, Muhd Fauzi Safian2, Mohamed
Izzharif Abdul Halim2, Mohd Muzamir Mahat1*
1School of Physics and Materials Studies, Faculty of Applied Sciences
2School of Chemistry and Environmental Studies, Faculty of
Applied Sciences
Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
*Corresponding author: mmuzamir@uitm.edu.my
Received: 20 November 2019;
Accepted: 31 March 2020; Published: 9 June
2020
Abstract
In this study, polyaniline
(PANI) was prepared by oxidative polymerization method with aniline salt. p-toluene sulfonic acid (pTSA) acted as the dopant to impart
conductive properties. The doping process changed the color of PANI from blue
PANI emeraldine base (EB) to green PANI emeraldine salt (ES). The thermal
characteristic of the doped PANI was analyzed with thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC). TGA results illustrated two
major stages of weight loss of PANI-EB, which were the loss of moisture content
and polymer degradation. PANI-ES displayed three stages of degradation, which
were the removal of dopant, moisture
content and the breakdown of polymer backbone. PANI-ES began to degrade at a higher temperature
around 170 to 173 ˚C due to the crosslinking of PANI and pTSA. This result suggested that PANI ES
had higher thermal stability compared to PANI-EB, which started deteriorating
at a lower temperature range of 160 to 163 ˚C. DSC analysis revealed that
PANI with 0.9 wt.% of pTSA portrayed
a range of broad peaks in its thermograms which suggested a higher rate of heat
transformation (155.35
˚C) and enthalpy than PANI with different concentrations of pTSA.
Furthermore, PANI with 0.9 wt.% of pTSA
exhibited the highest thermal stability at 125 ˚C. The prepared PANI was
utilised to fabricate conductive fabric by applying the facile
immersion technique. Cotton fabric was immersed in PANI-pTSA solution in three different concentrations (0.3, 0.6 and 0.9
wt.%). Based on
the findings of electro impedance spectroscopy (EIS) analysis, it can be
concluded that PANI with 0.9 wt.% of pTSA
demonstrated better conductivity (3.30 x 10-3 S/m) when compared to
PANI with 0.3 wt.% of pTSA (1.06 x 10-7
S/m).
Keywords: polyaniline,
conductive polymer, thermogravimetric analysis, differential scanning
calorimetry, electro impedance spectroscopy
Abstrak
Dalam
kajian ini, polianilina (PANI) disediakan menggunakan kaedah pempolimeran oksidatif
daripada anilina. Asid p-toluena
sulfonik (pTSA) bertindak sebagai
dopan yang menyebabkan sifat pengaliran elektrik terhadap polianilina. Proses
dop PANI dengan pTSA telah mengubah
warna PANI dari PANI emeraldin bes (EB) biru ke warna hijau, PANI garam emeraldin
(ES). Analisis-analisis termogravimetrik (TGA) dan kalorimetri pengimbasan
berbeza (DSC) digunakan untuk menganalisis ciri-ciri PANI yang didopkan dengan pTSA. Hasil TGA menggambarkan bahawa
terdapat dua peringkat utama kehilangan berat pada PANI-EB iaitu kandungan
kelembapan air dan rantaian utama polimer. Dari sudut berbeza, PANI-ES
menunjukkan tiga peringkat kehilangan berat iaitu penyingkiran kandungan dopan,
kandungan kelembapan air dan rantaian utama polimer. Kajian ini mendapati
bahawa kehilangan berat PANI-ES bermula pada suhu lebih tinggi sekitar 170 hingga
173 ˚C disebabkan oleh ikatan molekul PANI dan pTSA. Ini menunjukkan bahawa PANI-ES mempunyai kestabilan haba yang
lebih tinggi berbanding dengan PANI-EB yang bermula sekitar 160 hingga 163
˚C. Analisis DSC mendedahkan bahawa 0.9% kepekatan pTSA menggambarkan puncak yang lebar dalam termogram yang
menunjukkan bahawa transformasi haba yang tinggi (155.35 ˚C) dan entalpi
yang tinggi daripada kepekatan lain. Analisis DSC ini mendapati bahawa PANI
pada kepekatan 0.9 wt.% mempunyai kestabilan yang tinggi iaitu pada 125
˚C. Selepas itu, kain PANI yang bersifat konduktif dibuat menggunakan
teknik rendaman yang mudah. Kain kapas direndam dalam larutan PANI-pTSA dalam kepekatan yang berbeza (0.3,
0.6 dan 0.9 wt.%). Elektro impedans spektroskopi (EIS) digunakan untuk
menganalisis kajian pengaliran elektrik pada kain kapas PANI. Berdasarkan
keputusan EIS, dapat disimpulkan bahawa PANI dop dengan 0.9 wt.% pTSA (3.30 x 10-3 S/m)
memperlihatkan pengaliran elektrik yang sangat baik berbanding dengan kepekatan
0.3 wt.% (1.06 x 10-7 S/m).
Kata kunci: polianilina,
polimer pengalir elektrik, analisis termogravimetrik, kalorimetri pengimbasan
berbeza, elektro impedans spektroskopi
References
1.
Mishra, A. K. (2018).
Conducting polymers: Concepts and applications. Journal of Atomic, Molecular, Condensate and Nano Physics, 5(1):
159-193.
2.
Shacklette, L. W.,
Colaneri, N. F., Kulkarni, V. G. and Wessling, B. (1992). EMI shielding of intrinsically
conductive polymers. Journal of Vinyl and
Additive Technology, 14(2): 118-122.
3.
Rochliadi, A., Akbar S.
A. and Suendo. V. (2015). Polyaniline/Zn as secondary battery for electric
vehicle base on energy return factor. Proceedings
of the Joint International Conference on Electric Vehicular Technology and
Industrial, Mechanical, Electrical and Chemical Engineering, Surakarta,
1(13): 353-358.
4.
Sengupta, P. P., Barik,
S. and Adhikari, B. (2006). Polyaniline as a gas-sensor material. Materials and Manufacturing Processes,
21(3): 263-270.
5.
Wei, R., Hua, X. and
Xiong, Z. (2018). Polymers and polymeric composites with electronic
applications. International Journal of
Polymer Science, 2018: 1.
6.
Heng Teo, C., Karode,
N. S., Abid, K. and Rahman, F. (2011). Interfacial behaviour of polyaniline as
an organic electronic material. Journal
of Physics and Chemistry of Solids, 72(7): 886-890.
7.
Ramakrishnan, S.
(1997). Conducting polymers. Inorganic
and Physical Chemistry 2(11): 48-58.
8.
Srinivas, C. H., Srinivani,
D., Kavitha, B., Narsimlu, N. and Siva Kumar, K. (2012). Synthesis and
characterization of nano size conducting polyaniline. IOSR Journal of Applied Physics, 1(1): 12-15.
9.
Mahat, M. M., Mawad,
D., Nelson, G. W., Fearn, S., Palgrave, R. G., Payne, D. J. and Stevens, M. M.
(2015). Elucidating the deprotonation of polyaniline films by X-ray
photoelectron spectroscopy. Journal of
Materials Chemistry C, 3(27): 7180-7186.
10.
Wang, H., Lin, J. and
Shen, Z. X. (2016). Polyaniline (PANI) based electrode materials for energy
storage and conversion. Journal of
Science: Advanced Materials and Devices, 1(3): 225-255.
11.
Olad, A. and Azhar, F. F.
(2013). Trends in polyaniline research e-book. Hauppauge,
New York: pp. 361- 384.
12.
Zahid, M.,
Papadopoulou, E., Athanassiou, A. and Bayer, I. (2017). Strain-responsive
mercerized conductive cotton fabrics based on PEDOT: PSS/graphene. Materials and Design, 1(2): 135.
13.
Gorji, M. and Ali J.
(2018). The study of burning behavior of cotton/glass woven fabrics. Trends in Textile Engineering & Fashion
Technology, 3(5): 2578.
14.
Jinsong, H., Li, R. and
Gu, F. (2012). Preparation of polyaniline/nylon conducting fabric by
layer-by-layer assembly method. Journal
of Applied Polymer Science, 3(1): 12-19.
15.
Zaki, M. R., Anuar, K.,
Jelas, M. H. and Faiz, M. (2001). Electrical properties and thermal stabilities
studies of conducting polyaniline doped with different sulphonic acids. Malaysian Journal of Analytical Sciences,
7(2): 445-451.
16.
Bhat, N. V., Seshadri,
D. T. and Radhakrishnan, S. (2004). Preparation, characterization, and
performance of conductive fabrics: Cotton and PANI. Textile Research Journal, 74(2): 155-166.
17.
Wang, X., Liu, D.,
Deng, J., Duan, X., Guo, J. and Liu, P. (2015). Improving cyclic stability of
polyaniline by thermal crosslinking as electrode material for supercapacitors. RSC Advances, 5(96): 78545-78552.
18.
Yılmaz, F. and
Küçükyavuz, Z. (2009). The influence of polymerization temperature on structure
and properties of polyaniline. e-Polymers,
16(3): 225-233.
19.
Chauhan, N., Ametab, R.,
Ametac, R. and Ameta, S. (2011). Thermal and conducting behavior of emeraldine
base (EB) form of polyaniline (PANI). Indian
Journal of Chemical Technology, 18(1): 118-122.
20.
Chen, C. H. (2003).
Thermal and morphological studies of chemically prepared emeraldine‐base‐form
polyaniline powder. Journal of Applied
Polymer Science, 89(1): 2142-2148.
21.
Corcione, C. and
Frigione, M. (2012). Characterization of nanocomposites by thermal analysis. Materials, 5(12): 2960-2980.
22.
Yao, C. J., Zhang, H. L.
and Zhang, Q. (2019). Recent progress in thermoelectric materials based on conjugated
polymers. Journal of Polymers, 11(1):
107.
23.
David, N. C., Anavi,
D., Milanovich, M., Popowski, Y., Frid, L. and Amir, E. (2017). Preparation and
properties of electro-conductive fabrics based on polypyrrole: covalent vs.
non-covalent attachment. IOP Conference
Series: Materials Science and Engineering, 254: 032002.
24.
Wei,
Y., Jang, G. W., Hsueh, K. F., Scherr, E. M., MacDiarmid, A. G. and Epstein, A.
J. (1992). Thermal transitions and mechanical properties of films of chemically
prepared polyaniline. Journal of
Materials Polymer, 1(33): 314.