Malaysian Journal of Analytical Sciences Vol 24 No 3 (2020): 413 - 421

 

 

 

 

STUDY OF CONDUCTIVITY AND THERMAL PROPERTIES OF POLYANILINE DOPED WITH p-TOLUENE SULFONIC ACID

 

(Kajian Pengaliran Elektrik dan Haba terhadap Polianilina di-Dopkan dengan Asid p-Toluena Sulfonik)

 

Muhammad Faiz Aizamddin1, Nazreen Che Roslan1, Muhammad Asyrap Kamarudin1, Siti Nurzatul Ikma Omar1, Muhd Fauzi Safian2, Mohamed Izzharif Abdul Halim2, Mohd Muzamir Mahat1*

 

1School of Physics and Materials Studies, Faculty of Applied Sciences

2School of Chemistry and Environmental Studies, Faculty of Applied Sciences

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  mmuzamir@uitm.edu.my

 

 

Received: 20 November 2019; Accepted: 31 March 2020; Published:  9 June 2020

 

 

Abstract

In this study, polyaniline (PANI) was prepared by oxidative polymerization method with aniline salt. p-toluene sulfonic acid (pTSA) acted as the dopant to impart conductive properties. The doping process changed the color of PANI from blue PANI emeraldine base (EB) to green PANI emeraldine salt (ES). The thermal characteristic of the doped PANI was analyzed with thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA results illustrated two major stages of weight loss of PANI-EB, which were the loss of moisture content and polymer degradation. PANI-ES displayed three stages of degradation, which were the removal of dopant, moisture content and the breakdown of polymer backbone. PANI-ES began to degrade at a higher temperature around 170 to 173 ˚C due to the crosslinking of PANI and pTSA. This result suggested that PANI ES had higher thermal stability compared to PANI-EB, which started deteriorating at a lower temperature range of 160 to 163 ˚C. DSC analysis revealed that PANI with 0.9 wt.% of pTSA portrayed a range of broad peaks in its thermograms which suggested a higher rate of heat transformation (155.35 ˚C) and enthalpy than PANI with different concentrations of pTSA.  Furthermore, PANI with 0.9 wt.% of pTSA exhibited the highest thermal stability at 125 ˚C. The prepared PANI was utilised to fabricate conductive fabric by applying the facile immersion technique. Cotton fabric was immersed in PANI-pTSA solution in three different concentrations (0.3, 0.6 and 0.9 wt.%). Based on the findings of electro impedance spectroscopy (EIS) analysis, it can be concluded that PANI with 0.9 wt.% of pTSA demonstrated better conductivity (3.30 x 10-3 S/m) when compared to PANI with 0.3 wt.% of pTSA (1.06 x 10-7 S/m).

 

Keywords: polyaniline, conductive polymer, thermogravimetric analysis, differential scanning calorimetry, electro impedance spectroscopy

 

Abstrak

Dalam kajian ini, polianilina (PANI) disediakan menggunakan kaedah pempolimeran oksidatif daripada anilina. Asid p-toluena sulfonik (pTSA) bertindak sebagai dopan yang menyebabkan sifat pengaliran elektrik terhadap polianilina. Proses dop PANI dengan pTSA telah mengubah warna PANI dari PANI emeraldin bes (EB) biru ke warna hijau, PANI garam emeraldin (ES). Analisis-analisis termogravimetrik (TGA) dan kalorimetri pengimbasan berbeza (DSC) digunakan untuk menganalisis ciri-ciri PANI yang didopkan dengan pTSA. Hasil TGA menggambarkan bahawa terdapat dua peringkat utama kehilangan berat pada PANI-EB iaitu kandungan kelembapan air dan rantaian utama polimer. Dari sudut berbeza, PANI-ES menunjukkan tiga peringkat kehilangan berat iaitu penyingkiran kandungan dopan, kandungan kelembapan air dan rantaian utama polimer. Kajian ini mendapati bahawa kehilangan berat PANI-ES bermula pada suhu lebih tinggi sekitar 170 hingga 173 ˚C disebabkan oleh ikatan molekul PANI dan pTSA. Ini menunjukkan bahawa PANI-ES mempunyai kestabilan haba yang lebih tinggi berbanding dengan PANI-EB yang bermula sekitar 160 hingga 163 ˚C. Analisis DSC mendedahkan bahawa 0.9% kepekatan pTSA menggambarkan puncak yang lebar dalam termogram yang menunjukkan bahawa transformasi haba yang tinggi (155.35 ˚C) dan entalpi yang tinggi daripada kepekatan lain. Analisis DSC ini mendapati bahawa PANI pada kepekatan 0.9 wt.% mempunyai kestabilan yang tinggi iaitu pada 125 ˚C. Selepas itu, kain PANI yang bersifat konduktif dibuat menggunakan teknik rendaman yang mudah. Kain kapas direndam dalam larutan PANI-pTSA dalam kepekatan yang berbeza (0.3, 0.6 dan 0.9 wt.%). Elektro impedans spektroskopi (EIS) digunakan untuk menganalisis kajian pengaliran elektrik pada kain kapas PANI. Berdasarkan keputusan EIS, dapat disimpulkan bahawa PANI dop dengan 0.9 wt.% pTSA (3.30 x 10-3 S/m) memperlihatkan pengaliran elektrik yang sangat baik berbanding dengan kepekatan 0.3 wt.% (1.06 x 10-7 S/m).

 

Kata kunci:    polianilina, polimer pengalir elektrik, analisis termogravimetrik, kalorimetri pengimbasan berbeza, elektro impedans spektroskopi

 

References

1.       Mishra, A. K. (2018). Conducting polymers: Concepts and applications. Journal of Atomic, Molecular, Condensate and Nano Physics, 5(1): 159-193.

2.       Shacklette, L. W., Colaneri, N. F., Kulkarni, V. G. and Wessling, B. (1992). EMI shielding of intrinsically conductive polymers. Journal of Vinyl and Additive Technology, 14(2): 118-122.

3.       Rochliadi, A., Akbar S. A. and Suendo. V. (2015). Polyaniline/Zn as secondary battery for electric vehicle base on energy return factor. Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering, Surakarta, 1(13): 353-358.

4.       Sengupta, P. P., Barik, S. and Adhikari, B. (2006). Polyaniline as a gas-sensor material. Materials and Manufacturing Processes, 21(3): 263-270.

5.       Wei, R., Hua, X. and Xiong, Z. (2018). Polymers and polymeric composites with electronic applications. International Journal of Polymer Science, 2018: 1.

6.       Heng Teo, C., Karode, N. S., Abid, K. and Rahman, F. (2011). Interfacial behaviour of polyaniline as an organic electronic material. Journal of Physics and Chemistry of Solids, 72(7): 886-890.

7.       Ramakrishnan, S. (1997). Conducting polymers. Inorganic and Physical Chemistry 2(11): 48-58.

8.       Srinivas, C. H., Srinivani, D., Kavitha, B., Narsimlu, N. and Siva Kumar, K. (2012). Synthesis and characterization of nano size conducting polyaniline. IOSR Journal of Applied Physics, 1(1): 12-15.

9.       Mahat, M. M., Mawad, D., Nelson, G. W., Fearn, S., Palgrave, R. G., Payne, D. J. and Stevens, M. M. (2015). Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy. Journal of Materials Chemistry C, 3(27): 7180-7186.

10.    Wang, H., Lin, J. and Shen, Z. X. (2016). Polyaniline (PANI) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices, 1(3): 225-255.

11.    Olad, A. and Azhar, F. F. (2013). Trends in polyaniline research e-book. Hauppauge, New York: pp. 361- 384.

12.    Zahid, M., Papadopoulou, E., Athanassiou, A. and Bayer, I. (2017). Strain-responsive mercerized conductive cotton fabrics based on PEDOT: PSS/graphene. Materials and Design, 1(2): 135.

13.    Gorji, M. and Ali J. (2018). The study of burning behavior of cotton/glass woven fabrics. Trends in Textile Engineering & Fashion Technology, 3(5): 2578.

14.    Jinsong, H., Li, R. and Gu, F. (2012). Preparation of polyaniline/nylon conducting fabric by layer-by-layer assembly method. Journal of Applied Polymer Science, 3(1): 12-19.

15.    Zaki, M. R., Anuar, K., Jelas, M. H. and Faiz, M. (2001). Electrical properties and thermal stabilities studies of conducting polyaniline doped with different sulphonic acids. Malaysian Journal of Analytical Sciences, 7(2): 445-451.

16.    Bhat, N. V., Seshadri, D. T. and Radhakrishnan, S. (2004). Preparation, characterization, and performance of conductive fabrics: Cotton and PANI. Textile Research Journal, 74(2): 155-166.

17.    Wang, X., Liu, D., Deng, J., Duan, X., Guo, J. and Liu, P. (2015). Improving cyclic stability of polyaniline by thermal crosslinking as electrode material for supercapacitors. RSC Advances, 5(96): 78545-78552.

18.    Yılmaz, F. and Küçükyavuz, Z. (2009). The influence of polymerization temperature on structure and properties of polyaniline. e-Polymers, 16(3): 225-233.

19.    Chauhan, N., Ametab, R., Ametac, R. and Ameta, S. (2011). Thermal and conducting behavior of emeraldine base (EB) form of polyaniline (PANI). Indian Journal of Chemical Technology, 18(1): 118-122.

20.    Chen, C. H. (2003). Thermal and morphological studies of chemically prepared emeraldine‐base‐form polyaniline powder. Journal of Applied Polymer Science, 89(1): 2142-2148.

21.    Corcione, C. and Frigione, M. (2012). Characterization of nanocomposites by thermal analysis. Materials, 5(12): 2960-2980.

22.    Yao, C. J., Zhang, H. L. and Zhang, Q. (2019). Recent progress in thermoelectric materials based on conjugated polymers. Journal of Polymers, 11(1): 107.

23.    David, N. C., Anavi, D., Milanovich, M., Popowski, Y., Frid, L. and Amir, E. (2017). Preparation and properties of electro-conductive fabrics based on polypyrrole: covalent vs. non-covalent attachment. IOP Conference Series: Materials Science and Engineering, 254: 032002.

24.    Wei, Y., Jang, G. W., Hsueh, K. F., Scherr, E. M., MacDiarmid, A. G. and Epstein, A. J. (1992). Thermal transitions and mechanical properties of films of chemically prepared polyaniline. Journal of Materials Polymer, 1(33): 314.