Malaysian Journal of Analytical Sciences Vol 24 No 3 (2020): 405 - 412

 

 

 

 

THERMAL STABILITY AND POROSITY OF REDUCED GRAPHENE OXIDE/ZINC OXIDE NANOPARTICLES AND THEIR CAPACITY AS A POTENTIAL OXYGEN REDUCTION ELECTROCATALYST

 

(Kestabilan Haba dan Keliangan Partikel Nano Grafin Oksida Terturun/Zink Oksida dan Keupayaannya sebagai Pemangkin Elektro Tindakbalas Penurunan Oksigen)

 

Karthi Suresh and Farhanini Yusoff*

 

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  farhanini@umt.edu.my

 

 

Received: 30 March 2020; Accepted: 2 May 2020; Published:  9 June 2020

 

 

Abstract

Zinc oxide/reduced graphene oxide (ZnO/rGO) nanoparticle were synthesized through a facile one-pot method. The use of rGO was initiated due to presence of more active sites compared to graphene oxide (GO). Physical characterization such as Fourier transform infrared spectroscopy (FTIR) confirmed the presence of ZnO stretching peak in the spectrum of rGO, suggesting that nanoparticles coexisted as a component. Thermo-gravimetric analysis (TGA) confirmed the stability of nanoparticles as 68.91% of the nanoparticles remained after exposure to high temperature of 900 °C. The nanoparticles were under mesopore region when studied using Brunauer-Emmett-Teller (BET), with the pore volume of 10.4 nm. Drops of ZnO/rGO were drop-casted onto a bare glassy carbon electrode (GCE) to study the electrochemical behavior of the nanoparticles using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) as well as oxygen reduction reaction (ORR). Electrochemical studies on the modified electrode of ZnO/rGO/GCE exhibited greater current responses, stable electron transfer and also lower charge transfer resistance compared to a bare GCE. The nanoparticles demonstrated the potential application as an electrocatalyst with high yield rate in (ORR). Hence, the nanoparticles could be used as a substitute for precious metal usage, such as platinum, in current production and overcoming high costs.

 

Keywords:  electrochemistry, nanoparticle, electrolyte, graphene, zinc oxide

 

Abstrak

Nanopartikel zink oksida/grafin oksida terturun (ZnO/rGO) disintesis dengan cara satu pot. rGO digunakan kerana mempunyai tapak aktif yang banyak berbanding grafin oksida (GO). Pencirian fizikal yang dilaksanakan menggunakan spektroskopi inframerah transformasi Fourier (FTIR) mengesahkan kehadiran ZnO di spektrum rGO, yang mencadangkan kedua partikel ini wujud sebagai satu komponen sebati. Analisa gravimetrik terma (TGA) mencatatkan kestabilan nanokomposit dengan lebihan 68.91% di penghujung analisa 900 oC, dan nanokomposit disahkan sebagai komposit liang meso melalui keputusan analisa BET, dengan saiz liang  10.4 nm. Elektrod  karbon berkaca (GCE) digunakan dan diubahsuai menggunakan ZnO/rGO dengan teknik salutan titisan kemudiannya dikaji pencirian elektrokimia menggunakan kitaran voltametri (CV), spektroskopi elektrokimia impedans (EIS) dan tindak balas penurunan oksigen (ORR) yang menunjukkan respon elektrik yang bagus dan pemindahan elektron yang stabil serta kurang rintangan pemindahan kuasa apabila dibandingkan dengan GCE. Komposit nano menunjukkan keupayaan pengganti sebagai pemangkin elektro dan kadar hasil tinggi di ORR yang berkemungkinan menjadi pengganti logam berharga seperti platinum dan dapat mengurangkan kos penghasilan.           

 

Kata kunci:   elektrokimia, nanopartikel, elektrolit,  grafin, zink oksida

 

References

1.       Abdalla, A. M., Hossain, S., Azad, A. T. and Petra, P. M. I. (2018). Nanomaterials for solid oxide fuel    cells: A review. Renewable and Sustainable Energy Reviews, 82: 353-368.

2.       Wang, Y., Leung, D. Y. C., Xuan, J. and Wang, H. (2017). A review on unitized regenerative fuel cell    technologies, Part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and micro fluidic fuel cell. Renewable and Sustainable Energy Reviews, 75: 775-795.

3.       Muhamad, N. B., Khairul, W. M. and Yusoff, F. (2019). Synthesis and characterization of poly(3,4-ethylenedioxythiophene) functionalized graphene with gold nanoparticles as a potential oxygen reduction electrocatalyst. Journal of Solid State Chemistry, 275: 30-37.

4.       Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y. and Wu, Y. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45: 1558-1565.

5.       Yusoff, F., Khing, N. T., Hao, C. C., Sang, L. P., Basyirah, N. A. and  Saleh, N. M. (2018). The electrochemical behavior of zinc oxide/reduced graphene oxidecomposite electrode in dopamine. Malaysian Journal of Analytical Sciences, 22(2): 227-237.

6.       Chen, Y. L., Hu, Z. A., Wang, H. W., Zhang, Z, Y., Yang, Y. Y. and Wu, H. Y. (2011). Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. The Journal of Physical Chemistry, 115(5): 2563-2571.

7.       Hummers, W. S. and Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6): 1339.

8.       Teymourian, H., Salimi, A. and Khezrian, S. (2013). Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronic, 49: 1-8.

9.       Du, W., Lu, J., Sun, P., Zhu, Y. and Jiang, X. (2013). Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene. Chemical Physics Letters, 568-569: 198-201.

10.    Deemer, E. M., Kumar, P., Manciu, F. S., Botez, C. E., Hodges, D. R., Landis, Z. and Chianelli, R. R. (2017). Consequence of oxidation method on graphene oxide produced with different size graphite precursors. Materials Science & Engineering B, 224: 150-157.

11.    Papageorgiou, D. G., Kinloch, I. A. and Young, R. J. (2017). Mechanical properties of graphene and graphene-based nanoparticles. Progress in Materials Science, 90: 75-127.

12.    Zaghib, K., Song, X. and Kinoshita, K. (2001). Thermal analysis of the oxidation of natural graphite: Isothermal kinetic studies. Thermochimica Acta, 371(1-2): 57-64.

13.    Ryu, S. H. and Shanmugharaj, A. M. (2014). Influence of hexamethylene diamine functionalized graphene oxide on the melt crystallization and properties of polypropylene nanoparticles. Materials Chemistry and Physics, 146(3): 478-486.

14.    Tiwari, A. and Hihara, L. H. (2009). Thermal stability and thermokinetics studies on silicone ceramer coatings: Part 1-inert atmosphere parameters. Polymer Degradation and Stability, 94(10): 1754-1771.

15.    Huang, S. and Sheng, J. J. (2017). An innovative method to build a comprehensive kinetic model for air injection using TGA/DSC experiments. Fuel, 210: 98-106.

16.    Yusoff, F., Mohamed, N., Aziz, A. and Ghani, S. A. (2014). Electrocatalytic reduction of oxygen at perovskite (BSCF)-MWCNT composite electrodes. Materials Sciences and Applications, 5(04): 199-211.

17.    Nicholson, R. S. (1965). Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Analytical Chemistry, 37(11):1351-1355.

18.    Palanisamy, S., Ezhil Vilian, A. T. and Chen, S. M. (2012). Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor. International Journal of Electrochemical Science, 7(3): 2153-2163.

19.    Tehrani, R. M. A., Ghadimi, H. and Ab Ghani, S. (2013). Electrochemical studies of two diphenols isomers at graphene nanosheet-poly(4-vinyl pyridine) composite modified electrode. Sensors and Actuators, B: Chemical, 177: 612-619.

20.    Yusoff, F., Aziz, A., Mohamed, N. and Ghani, S. A. (2013). Synthesis and characterizations of BSCF at different pH as future cathode materials for fuel cell. International Journal of Electrochemical Science, 8: 10672-10687.

21.    Yu, J., Liu, Z., Zhai, L. and Huang, T. (2016). Reduced graphene oxide supported TiO2 as high performance catalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 41(5): 3436–3445.