Malaysian Journal of Analytical Sciences Vol 24 No 3 (2020): 390 - 404

 

 

 

 

OPTIMIZATION OF MONTMORILLONITE K10 ION-EXCHANGE WITH Fe3+ FOR THE APPLICATION OF BIODIESEL PRODUCTION

 

(Pengoptimuman Pertukaran Ion Montmorilonit K10 dengan Fe3+ untuk Aplikasi Penghasilan Biodiesel)

 

Syahirah Yahya1 and Farah Wahida Harun2, 3*

 

1Department of Chemistry and Food Technology,

Politeknik Tun Syed Nasir Syed Ismail,

Hab Pendidikan Tinggi Pagoh, KM1 Jalan Panchor, 84600 Pagoh, Johor, Malaysia

2Faculty of Science and Technology

3Frontier Materials Research Group

Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

 

*Corresponding author:  farahw@usim.edu.my

 

 

Received: 20 November 2019; Accepted: 17 April 2020; Published: 9 June 2020

 

 

Abstract

The modification of montmorillonite K10 with Fe3+ was investigated to study the optimum ion-exchange occurred in the interlayers of clays. Montmorillonite K10 was modified to be applied as a catalyst in biodiesel production from waste cooking oil (WCO). Three methods to optimize the ion-exchange process were investigated. For method 1 and method 2, respective 14% and 27% by mass of Fe in montmorillonite K10 were stirred in a closed cap system for 7 hours while method 3 applied 20% of Fe stirred with montmorillonite K10 for 24 hours until it became mold and slurry. The ability of ion-exchange was tested using SEM/EDX. It was found that 1.21% Fe composition increased by using method 1 while 2.66% Fe increased using method 2. The highest Fe exchange was detected using method 3 with 5.23% increment. For more accurate result, 20% Fe-MMT K10 from method 3 was characterized using XRF and it was found that the ion exchange occurred with interchangeable Ca2+. In correlation, the effect of Fe increment on acidity was studied by using TPD-NH3. Naturally, montmorillonite K10 possessed 0.232 mmol/g of acidity. The results found that the highest acidity was detected for 20% Fe-MMT K10 (14.261 mmol/g). The application of montmorillonite K10 on biodiesel production increased the yield up to 38.39% compared to the reaction without catalyst (26.80%). With the aid of modified montmorillonite K10, 66.54% and 69.32% biodiesel were produced using catalyst from method 1 and 2 respectively. Amazingly, an outstanding yield was produced by using catalyst from method 3 (84.58%). Therefore, 20% Fe-MMT K10 catalyst was selected for further biodiesel optimization via conventional method. It was found that 96.49% biodiesel was successfully produced with 28.65% acid conversion at 150 °C, 6 h, 12:1 methanol: oil and 4 wt.% mass of catalyst. The investigations on acid conversion and biodiesel yield proved that the modification of montmorillonite K10 with 20% Fe is the optimum and the catalyst can undergo both esterification and transesterification reactions simultaneously to produce optimum biodiesel yield.

 

Keywords:    Montmorillonite K10, Fe3+ ion-exchange, simultaneous esterification-transesterification, biodiesel, waste cooking oil

 

Abstrak

Pengubahsuaian montmorilonit K10 dengan Fe3+ telah dijalankan untuk mengkaji pertukaran ion yang optimum pada lapisan tanah liat. Montmorilonit K10 diubahsuai untuk dijadikan sebagai pemangkin dalam pengeluaran biodiesel dari minyak masak terpakai (WCO). Tiga kaedah untuk mengoptimumkan proses pertukaran ion telah dikaji. Untuk kaedah 1 dan kaedah 2, masing-masing 14% dan 27% jisim Fe dalam montmorilonit K10 telah dicampur dalam sistem tertutup selama 7 jam. Manakala kaedah 3 menggunakan 20% Fe dikacau dengan montmorilonit K10 selama 24 jam sehingga pekat seperti tanah liat. Keupayaan penukaran ion telah diuji menggunakan SEM/EDX. Hasil kajian mendapati bahawa komposisi Fe meningkat sebanyak 1.21% dengan menggunakan kaedah 1 manakala 2.66% Fe meningkat dengan menggunakan kaedah 2. Pertukaran Fe tertinggi telah dikesan menggunakan kaedah 3 dengan kenaikan Fe sebanyak 5.23%. Untuk hasil yang lebih tepat, 20% Fe-MMT K10 dari kaedah 3 dicirikan dengan menggunakan XRF dan didapati ion Ca2+ bertukar dengan Fe3+. Kesan kenaikan Fe terhadap tahap keasidan dikaji dengan menggunakan TPD-NH3. Pada asalnya, montmorilonit K10 mempunyai tahap keasidan 0.232 mmol/g. Setelah diubahsuai, keasidan tertinggi dikesan pada sampel 20% Fe-MMT K10 (14.261 mmol / g). Penggunaan montmorilonit K10 dalam pengeluaran biodiesel menghasilkan 38.39% produk berbanding tindak balas tanpa pemangkin (26.80%). Dengan bantuan montmorilonit K10 yang diubahsuai, masing-masing 66.54% dan 69.32% biodiesel dihasilkan menggunakan pemangkin yang diubahsuai dari kaedah 1 dan 2. Namun, biodiesel yang paling tinggi dihasilkan dengan menggunakan pemangkin daripada kaedah 3 (84.58%). Oleh itu, pemangkin 20% Fe-MMT K10 telah dipilih untuk pengoptimuman biodiesel melalui kaedah konvensional. Hasil kajian mendapati bahawa 96.49% biodiesel berjaya dihasilkan dengan penukaran asid sebanyak 28.65% pada 150 °C, 6 jam, 12: 1 metanol: minyak dan 4% berat masa pemangkin. Kajian penukaran asid dan hasil biodiesel telah membuktikan bahawa pengubahsuaian montmorilonit K10 dengan 20% Fe adalah optimum dan 20% Fe-MMT K10 boleh menjalani tindak balas esterifikasi dan transesterifikasi secara serentak untuk menghasilkan biodiesel yang optimum.

 

Kata kunci:    Montmorilonit K10, pertukaran ion Fe3+, esterifikasi-transesterifikasi serentak, biodiesel, minyak masak terpakai

 

References

1.       Reddy, C. R., Nagendrappa, G. and Prakash, B. J. (2007). Surface acidity study of Mn+-montmorillonite clay catalysts by FT-IR spectroscopy: Correlation with esterification activity. Catalysis Communications, 8(3): 241-246.

2.       Jung, J. M., Oh, J. I., Park, Y. K., Lee, J. and Kwon, E. E. (2019). Biodiesel synthesis from fish waste via thermally-induced transesterification using clay as porous material. Journal of Hazardous Materials, 371: 27-32.

3.       Bouguerra Neji, S., Trabelsi, M. and Frikha, M. H. (2009). Esterification of fatty acids with short-chain alcohols over commercial acid clays in a semi-continuous reactor. Energies, 2(4): 1107-1117.

4.       Fatimah, I., Hidayat, A. and Setiawan, K. H. (2010). Preparation of aluminium pillared clay from Indonesian montmorillonite and its catalytic activity in bio-oil cracking. Asian Journal of Chemistry, 22(5): 3793.

5.       Almadani, E. A., Radzi, S. M. and Harun, F. W. (2016). Stearic acid esters synthesized using iron exchanged montmorillonite K10 clay catalysts. International Journal of Applied Chemistry, 12(1): 62-67.

6.       Kloprogge, J. T., Duong, L. V. and Frost, R. L. (2005). A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels. Environmental Geology, 47(7): 967-981.

7.       Ma, Y., Wang, Q., Sun, X., Wu, C. and Gao, Z. (2017). Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Renewable Energy, 107: 522-530.

8.       Harun, F. W., Almadni, E. A. and Ali, E. S. (2017). M-MMT K10 (M: Cu, Al and Fe) as catalysts for the esterification of acetic acid and stearic acid with methanol. In Proceedings of the World Congress on Engineering and Computer Science, 2: 606-609.

9.       Liu, J., Yun, Z. and Gui, X. (2018). Ce/kaolin clay as an active catalyst for fatty acid methyl esters production from cottonseed oil in a new integrated apparatus. Brazilian Journal of Chemical Engineering, 35(1): 147-154.

10.    Almadani, E. A., Harun, F. W., Radzi, S. M. and Muhamad, S. K. (2018). Cu2+ montmorillonite k10 clay catalyst as a green catalyst for production of stearic acid methyl ester: optimization using response surface methodology (RSM). Bulletin of Chemical Reaction Engineering & Catalysis, 13(1): 187-195.

11.    Sabri, S. M. M., Yahya, S., Razali, F. H. and Harun, F. W. (2019). Modification of montmorillonite K10 with Al3+ and its potential in biodiesel production. Malaysian Journal of Science Health & Technology, 4: 30-34.

12.    Yahya, S., Razali, F. H. and Harun, F. W. (2019). Physicochemical properties of refined palm cooking oil and used palm cooking oil. Materials Today: Proceedings, 19: 1166-1172.

13.    Jha, A., Garade, A. C., Shirai, M. and Rode, C. V. (2013). Metal cation-exchanged montmorillonite clay as catalysts for hydroxyalkylation reaction. Applied Clay Science, 74: 141-146.

14.    Liu, J., Wang, X. Q., Yang, B. B., Liu, C. L., Xu, C. L. and Dong, W. S. (2018). Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite. Renewable Energy, 120: 231-240.

15.    Ramesh, S., Prakash, B. J. and Bhat, Y. S. (2010). Enhancing Brønsted acid site activity of ion exchanged montmorillonite by microwave irradiation for ester synthesis. Applied Clay Science, 48(1-2): 159-163.

16.    Olutoye, M. A., Wong, S. W., Chin, L. H., Amani, H., Asif, M. and Hameed, B. H. (2016). Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renewable Energy, 86: 392-398.

17.    Dharne, S. and Bokade, V. V. (2011). Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. Journal of Natural Gas Chemistry, 20(1): 18-24.

18.    Harun, F. W., Almadani, E. A. and Radzi, S. M. (2016). Metal cation exchanged montmorillonite K10 (MMT K10): surface properties and catalytic activity. Journal of Scientific Research and Development, 3(3): 90-96.

19.    Nascimento, A. R. D., Alves, J. A. B. L. R., Melo, M. A. D. F., Melo, D. M. D. A., Souza, M. J. B. D. and  Pedrosa, A. M. G. (2015). Effect of the acid treatment of montmorillonite clay in the oleic acid esterification reaction. Materials Research, 18(2): 283-287.

20.    Shimizu, K. I., Higuchi, T., Takasugi, E., Hatamachi, T., Kodama, T. and Satsuma, A. (2008). Characterization of Lewis acidity of cation-exchanged montmorillonite K-10 clay as effective heterogeneous catalyst for acetylation of alcohol. Journal of Molecular Catalysis A: Chemical, 284(1-2): 89-96.

21.    Varadwaj, G. B. B. and Parida, K. M. (2013). Montmorillonite supported metal nanoparticles: an update on syntheses and applications. RSC Advances, 3(33): 13583-13593.

22.    Wang, F. F., Liu, J., Li, H., Liu, C. L., Yang, R. Z. and Dong, W. S. (2015). Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10. Green Chemistry, 17(4): 2455-2463.

23.    Wen, K., Zhu, J., Chen, H., Ma, L., Liu, H., Zhu, R., Xi, Y. and He, H. (2018). Arrangement models of Keggin-Al30 and Keggin-Al13 in the interlayer of montmorillonite and the impacts of pillaring on surface acidity: A comparative study on catalytic oxidation of toluene. Langmuir, 35(2): 382-390.

24.    Liu, D., Yuan, P., Liu, H., Cai, J., Tan, D., He, H., Zhu, J. and Chen, T. (2013). Quantitative characterization of the solid acidity of montmorillonite using combined FTIR and TPD based on the NH3 adsorption system. Applied Clay Science, 80: 407-412.

25.    Phukan, A., Bhorodwaj, S. K., Sharma, P. P. and Dutta, D. K. (2018). Mesoporous aluminosilicate: Efficient and reusable catalysts for esterification of sec-butanol with acetic acid. Journal of Porous Materials, 25(1): 129-136.

26.    Bharate, J. B., Sharma, R., Aravinda, S., Gupta, V. K., Singh, B., Bharate, S. B. and Vishwakarma, R. A. (2013). Montmorillonite clay catalyzed synthesis of functionalized pyrroles through domino four-component coupling of amines, aldehydes, 1, 3-dicarbonyl compounds and nitroalkanes. RSC Advances, 3(44): 21736-21742.

27.    Munir, M., Ahmad, M., Saeed, M., Waseem, A., Rehan, M., Nizami, A.S., Zafar, M., Arshad, M. and Sultana, S. (2019). Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst. Renewable and Sustainable Energy Reviews, 109: 321-332.

28.    Olutoye, M. A., Wong, S. W., Chin, L. H., Amani, H., Asif, M. and Hameed, B. H. (2016). Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renewable Energy, 86, 392-398.

29.    Babaki, M., Yousefi, M., Habibi, Z., Mohammadi, M., Yousefi, P., Mohammadi, J. and Brask, J. (2016). Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renewable Energy, 91: 196-206.

30.    Ayoub, M., Ullah, S., Inayat, A., Bhat, A. H. and Hailegiorgis, S. M. (2016). Process optimization for biodiesel production from waste frying oil over montmorillonite clay k-30. Procedia Engineering, 148: 742-749.

31.    Tan, Y. H., Abdullah, M. O., Nolasco-Hipolito, C. and Taufiq-Yap, Y. H. (2015). Waste ostrich-and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Applied Energy, 160: 58-70.

32.    Maneerung, T., Kawi, S., Dai, Y. and Wang, C. H. (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management, 123: 487-497.

33.    Liu, H., shuang Guo, H., jing Wang, X., zhong Jiang, J., Lin, H., Han, S. and Peng Pei, S. (2016). Mixed and ground KBr-impregnated calcined snail shell and kaolin as solid base catalysts for biodiesel production. Renewable Energy, 93: 648-657.

34.    Negm, N. A., Sayed, G. H., Yehia, F. Z., Habib, O. I. and Mohamed, E. A. (2017). Biodiesel production from one-step heterogeneous catalyzed process of Castor oil and Jatropha oil using novel sulphonated phenyl silane montmorillonite catalyst. Journal of Molecular Liquids, 234: 157-163.

35.    Ghoreishi, S. M. and Moein, P. (2013). Biodiesel synthesis from waste vegetable oil via transesterification reaction in supercritical methanol. The Journal of Supercritical Fluids, 76: 24-31.

36.    Refaat, A. A. (2011). Biodiesel production using solid metal oxide catalysts. International Journal of Environmental Science & Technology, 8(1): 203-221.

37.    Liu, X., He, H., Wang, Y., Zhu, S. and Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2): 216-221.