Malaysian
Journal of Analytical Sciences Vol 24 No 2 (2020): 288 - 299
SCREENING OF NATURAL COLOURS FROM VARIOUS NATURAL
RESOURCES AS POTENTIAL REUSABLE VISUAL INDICATORS FOR MONITORING FOOD FRESHNESS
(Saringan
Pewarna Semula Jadi Daripada Pelbagai Sumber Semula Jadi Sebagai Indikator
Visual Guna-Semula Untuk Pemantauan Kesegaran Makanan)
Mohd. Zulkhairi Abdul Rahim1*, Nurdiyana Husin2,
Mohd. Azizan Mohd Noor2, Zaida Rahayu Yet1, Mohammad Rashedi Ismail-Fitry3
1Section
of Technical Foundation
2Section
of Bioengineering Technology
Universiti
Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology, Lot
1988, Bandar Vendor,
78000
Alor Gajah, Malacca, Malaysia
3Faculty
of Science and Food Technology,
Universiti
Putra Malaysia, Serdang, 43400 Seri Kembangan, Selangor, Malaysia
*Corresponding author: mohd.zulkhairi@unikl.edu.my
Received: 20 November 2019;
Accepted: 20 March 2020
Abstract
Natural colours have emerged as an alternative source of colours due to
the high demand and public sensitivity towards the risk of using synthetic
colours. Natural colours are non-hazardous and made from renewable resources, in
which the supply is abundant and not harmful to the environment. This study aims to screen naturally-derived colours from
butterfly pea, red cabbage, turmeric, and beetroot as visual indicators in
monitoring food freshness. The study was carried out in three stages: the
extraction of natural colours, the absorption of natural colours on the indicator
paper, and the application of visual indicators on the real sample. The
results showed that all visual indicators changed their colours towards the
spoilage of meat in 24-h monitoring at room temperature. The most significant
colour change was observed on the natural colour from butterfly pea compared to
other natural resources. HS-SPME-GC-FID analysis confirmed the presence of
methylamine as the main volatile compound from the spoiled meat, which contributed
to the colour change of the visual indicators. FTIR analysis of useable
indicators indicated the presence of amine compound (N-H) that aligned with the
result of HS-SPME-GC-FID. The used visual indicators returned to their initial
colours and characteristics, which provide the possibility for the fabrication
of reusable visual indicators in the future.
Keywords: natural colour, visual
indicator, meat freshness
Abstrak
Penggunaan
warna semula jadi telah berkembang pesat disebabkan kesedaran pengguna terhadap
bahaya pewarna sintetik. Pewarna semula jadi tidak berbahaya dan boleh
diperbaharui selain sumber yang mudah didapati serta tidak membahayakan alam
sekitar. Kajian ini bertujuan menyaring pewarna semula jadi daripada pelbagai
sumber seperti bunga telang, kubis merah, kunyit, dan ubi bit untuk digunakan
sebagai indikator visual bagi mengukur kesegaran makanan. Kajian dijalankan
dalam tiga peringkat: pengekstrakan pewarna semula jadi, penyerapan pewarna semula
jadi ke atas kertas penunjuk, dan penggunaan indikator visual ke atas sampel
sebenar. Keputusan kajian menunjukkan kesemua indikator visual berubah warna
apabila terdedah kepada daging yang rosak ketika dianalisis pada suhu bilik
selama 24 jam. Perubahan warna indikator visual yang paling jelas adalah pada indikator
visual yang menggunakan pewarna semula jadi bunga telang. Analisis HS-SPME-GC-FID
yang dijalankan menunjukkan kehadiran metilamina yang terhasil ketika proses
kerosakan daging. Metilamina menjadi penyebab utama terhadap perubahan warna
indikator visual. Analisis FTIR ke atas indikator visual yang baru selesai
digunakan menunjukkan kehadiran sebatian amina yang mana selari dengan
keputusan analisis HS-SPME-GC-FID. Indikator visual yang telah digunakan
menunjukkan perubahan warna kepada warna asal membuktikan kemungkinan fabrikasi
indikator visual secara guna-semula pada masa akan datang.
Kata kunci: pewarna semula jadi, indikator visual, kesegaran daging
References
1. Sharma, D. (2014).
Understanding biocolour- A review. International Journal of Scientific &
Technology Research, 3(1): 294-299.
2. Suppadit, T., Sunthorn, N. and
Poungsuk, P. (2011). Use of anthocyanin extracted from natural plant materials
to develop a pH test kit for measuring effluent from animal farms. African
Journal of Biotechnology, 10(82): 19109-19118.
3. Kim, H. J., Kim, D., Kim, H. J., Song, S. O., Song, Y.
H. and Jang, A. (2018). Evaluation of the microbiological status of raw beef in
Korea: Considering the suitability of aerobic plate count guidelines. Korean
Journal for Food Science of Animal Resources, 38(1): 43-51.
4.
Meat &
Livestock Australia (2011). Meat standards australia beef information kit. Access
from https://www.mla.com.au/globalassets/mla-corporate/marketing-beef-and lamb/msa_tt_beefinfokit_jul13
_lr.pdf [Access online on 9 October
2017].
5. Rabeta, M. S. and Nabil, Z. A. (2013). Total phenolic
compounds and scavenging activity in Clitoria Ternatea and Vitex Negundo
Linn. International Food Research Journal, 20(1): 495-500.
6. Mishra, P. K., Singh, P., Gupta, K. K., Tiwari, H. and
Srivastava, P. (2012). Extraction of natural dye from Dhalia variabilis
using ultrasound. Chemical Engineering, 37: 1-18.
7. Saptarini, N. M., Suryasaputra, D. and Nurmalia, H.
(2015). Application of butterfly bea (Clitoria ternatea Linn) extract as
an indicator of acid-base titration. Journal of Chemical and Pharmaceutical
Research, 7 (2): 275-280.
8. Shukla, V., Kandeepan, G. and Vishnuraj, M. R. (2015).
Development of on-package indicator sensor for real-time monitoring of buffalo
meat quality during refrigeration storage. Food Analytical Methods, 8(6):
1591-1597.
9. Kuswandi, B., Jember, U., Jayus, J. and Jember, U.
(2015). Simple and low-cost on-package sticker sensor based on litmus paper for
real-time monitoring of beef freshness. Journal of Mathematical and
Fundamental Sciences, 47(1): 236-251.
10. Ma, Q. L., Hamid, N., Bekhit, A. E. D., Robertson, J.
and Law, T. F. (2013). Optimization of headspace solid phase microextraction (HS-SPME)
for gas chromatography mass spectrometry (GC-MS) analysis of aroma compounds in
cooked beef using response surface methodology. Microchemical Journal,
111: 16- 24.
11. Wahyuningsih, S., Wulandari, L., Wartono, M. W.,
Munawaroh, H. and Ramelan, A. H. (2017). The effect of pH and color stability
of anthocyanin on food colorant. IOP Conference Series: Materials Science
and Engineering, 193(1): 012047.
12. Shukla, V., Kandeepan, G., Rajan, M. and Arvind, V.
(2016). Anthocyanins based indicator sensor for intelligent packaging
application. Agricultural Research, 5(2): 205-209.
13. Kuswandi, B., Jayus, Larasati, T. S., Abdullah, A. and
Heng, L. Y. (2012). Real-time monitoring of shrimp spoilage using on-package
sticker sensor based on natural dye of curcumin. Food Analytical Methods,
5 (4): 881-889.
14. Dave, D. and Ghaly, A. E. (2011). Meat spoilage
mechanisms and preservation techniques: A critical review. American Journal
of Agricultural and Biological Science, 6(4): 486-510.
15. Bland, J. M. and Altman, D. G. (1995). Tukey multiple
comparison test. British Medical Journal of Clinical Nursing, 310(8):
299-304.