Malaysian Journal of Analytical Sciences Vol 24 No 2 (2020): 197 - 208

 

 

 

 

VORTEX-ASSISTED SUPRAMOLECULAR-BASED DISPERSIVE LIQUID PHASE MICROEXTRACTION FOR SPECTROPHOTOMETRIC DETERMINATION OF RHODAMINE B IN CHILI POWDER

 

(Supramolekul Berasaskan Serakan Cecair Fasa Pengekstrakan Mikro Berbantu-Vorteks untuk Penentuan Spektrofotometrik Rhodamin B dalam Serbuk Cili)

 

Renitha Harikrishnan1, Kavisha Sundraraj2, Boon Yih Hui3, Nur Nadhirah Mohamad Zain3, Noorfatimah Yahaya3, Kavirajaa Pandian Sambasevam4, Sharifah Mohamad5.,6, Yatimah Alias5,6, Muggundha Raoov5,6*

 

1 School of Distance Education,

Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia

2 Department of Chemical Science, Faculty of Science,

Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia

3 Integrative Medicine Cluster, Advanced Medical & Dental Institute,

Universiti Sains Malaysia, Pulau Pinang 13200, Malaysia

4 School of Chemistry and Environment,

Universiti Teknologi MARA, Kuala Pilah, Negeri Sembilan, Malaysia

5 Department of Chemistry, Faculty of Science

6 Universiti Malaya Centre for Ionic Liquids (UMCiL), Department of Chemistry, Faculty of Science

Universiti Malaya, Kuala Lumpur 50603, Malaysia

 

*Corresponding author:  muggundha@um.edu.my

 

 

Received: 16 December 2019; Accepted: 8 March 2020

 

 

Abstract

A vortex-assisted supramolecular-based dispersive liquid phase microextraction technique was established to detect trace quantities of Rhodamine B (RhB) in chili powder prior to its determination by ultraviolet-visible spectrophotometry. The supramolecular solvent, which was made of reverse micelles of 1-pentanol created through self-assembly processes, was injected into the aqueous sample solution as fine droplets and assisted by vortexing, which accelerated the mass transfer of target analyte into the supramolecular solvent phase. Five important parameters (type and volume of the extraction solvent, extraction time, sample pH, and ionic strength) were investigated, and the optimum conditions were as follows: 400 µL of 1-pentanol as the supramolecular solvent; 30 min extraction time; pH 5; and 15% salt addition. Under optimum conditions, linearity was in the range of 0.1 to 2.5 mg kg–1. The detection limit was 0.008 mg kg–1 with pre-concentration factor of 16, and the relative standard deviation (n = 5) was < 1.48%. The method was successfully applied to detect and measure RhB in selected chili powder samples, and good spiked recoveries in the range of 95.0 to 115.2% were obtained. This method has direct applications for monitoring the presence of potentially harmful dyes in processed foods.

 

Keywords:  rhodamine B, UV-Vis spectrophotometry, supramolecular solvent, chili powder

 

Abstrak

Supramolekul berasaskan serakan fasa cecair pengekstrakan mikro berbantu vorteks (VASM-DLPME) telah dibangunkan untuk mengesan kuantiti Rhodamin B (RhB) dalam serbuk cili dengan menggunakan spektrofotometrik UV-Vis. Pelarut supramolekul adalah misel songsang yang dihasilkan daripada 1-pentanol melalui proses pemasangan kendiri dan disuntik ke dalam larutan sampel akueus sebagai titisan halus dibantu oleh vorteks, yang mempercepatkan masa pemindahan daripada analisis sasaran ke dalam fasa pelarut supramolekul. Lima parameter penting seperti jenis dan isipadu pelarut pengekstrakan, masa pengekstrakan, sampel pH dan kekuatan ionik telah dikaji dan keadaan optimum yang diperoleh adalah seperti berikut: 400 µL 1-pentanol sebagai pelarut supramolekul, masa pengekstrakan selama 30 minit pada pH 5 dengan penambahan garam sebanyak 15%. Di bawah keadaan yang optimum, kelinearan didapati dalam julat 0.1 hingga 2.5 mg kg-1. Had pengesanan yang diperolehi adalah 0.008 mg kg-1 dengan faktor pra-kepekatan 16 dan sisihan piawai relatif (RSD, n = 5) kurang daripada 1.48% telah dicapai. Kaedah ini telah berjaya diaplikasikan untuk penentuan RhB dalam sampel serbuk cili terpilih dan kadar pemulihan berada pada julat 95.0-115.2% diperolehi. Kaedah ini mempunyai aplikasi langsung untuk pemantauan pewarna berbahaya dalam makanan yang diproses.

 

Kata kunci:  rhodamin B, spektrofotometri UV-Vis, pelarut supramolekul, serbuk cili

 

References

1.       Tsai, C.F., Kuo, C.H. and Shih, D.Y.C. (2015). Determination of 20 synthetic dyes in chili powders and syrup-preserved fruits by liquid chromatography/tandem mass spectrometry. Journal of Food and Drug Analysis, 23:453–462.

2.       Vachirapatama, N., Mahajaroensiri, J. and Visessanguan, W. (2008). Identification and determination of seven synthetic dyes in foodstuffs and soft drinks on monolithic C18 column by high performance liquid chromatography. Journal of Food & Drug Analysis, 16:77–82.

3.       Xu., X, Zhang, M., Wang, L., Zhang, S., Liu, M., Long, N., Qi, X., Cui, Z. and Zhang, L. (2016). Determination of rhodamine B in food using ionic liquid–coated multiwalled carbon nanotube–based ultrasound-assisted dispersive solid-phase microextraction followed by high-performance liquid chromatography. Food Analytical Methods, 9:1696–1705.

4.       Jieping, C. and Zhu, X. (2016). Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of rhodamine B in food samples. Food Chemistry, 200:10–15.

5.       Ahmed Bakheet, A. A. and Zhu, X. S. (2017). Determination of Rhodamine B in food samples by Fe3O4@ionic liquids-β-cyclodextrin cross linked polymer solid phase extraction coupled with fluorescence spectrophotometry. Journal of Fluorescene, 27:1087–1094.

6.       Sun, W. J., Li, J., Mele, G., Zhang, Z. Q. and Zhang, F. X. (2013). Enhanced photocatalytic degradation of rhodamine B by surface modification of ZnO with copper (II) porphyrin under both UV-Vis and visible light irradiation. Journal of Molecular Catalysis A: Chemical, 366: 84–91.

7.       Ahmed Bakheet, A. A. and Zhu, X. S. (2017). Determination of rhodamine B pigment in food samples by ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles coupled with fluorescence spectrophotometry. Science Journal of Chemistry, 5:1–7.

8.       Santiago Valverde, R., Sánchez Pérez, I., Franceschelli, F., Martínez Galera, M. and Gil García, M. D. (2007). Determination of photoirradiated tetracyclines in water by high-performance liquid chromatography with chemiluminescence detection based reaction of rhodamine B with cerium(IV). Journal of Chromatography A, 1167:85–94.

9.       Liu, X., Zhang, X., Zhou, Q., Bai, B. and Ji, S. (2013). Spectrometric determination of rhodamine B in chili powder after molecularly imprinted solid phase extraction. Bulletin of the Korean Chemical Society, 34:3381–3386.

10.    Souza, A. S., Siqueira, R.P., Prates, R. F., Bezerra, V. M., Rocha, D. da. S., Oliveira, M. V. and Santos, D. B. (2017). A dispersive liquid–liquid microextraction based on solidification of floating organic drop and spectrophotometric determination of uranium in breast milk after optimization using Box-Behnken design. Microchemical Journal, 134: 327–332.

11.    Pichon, V. (2000). Solid-phase extraction for multiresidue analysis of organic contaminants in water. Journal of Chromatography A, 885: 195–215.

12.    Tahmasebi, E., and Yamini, Y. (2012). Facile synthesis of new nano sorbent for magnetic solid-phase extraction by self assembling of bis-(2,4,4-trimethyl pentyl)-dithiophosphinic acid on Fe3O4@Ag core@shell nanoparticles: Characterization and application. Analytical Chimica Acta, 756: 13–22.

13.    Zheng, H., Ding, J., Zheng, S., Zhu, G. and Yuan, B. (2016). Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples. Talanta, 148: 46–53.

14.    Rubio, L., Sanllorente, S., Sarabia, L. A. and Ortiz, M. C. (2014). Optimization of a headspace solid-phase microextraction and gas chromatography/mass spectrometry procedure for the determination of aromatic amines in water and in polyamide spoons. Chemometrics and Intelligent Laboratory Systems, 133: 121–135.

15.    Trujillo-Rodríguez, M. J., Yu, H., Cole, W. T. S., Ho, T. D., Pino, V., Anderson, J. L. and Afonso, A. M. (2014). Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses. Talanta, 121: 153–162.

16.    Scheel, G. L., and Tarley, C. R. T. (2017). Feasibility of supramolecular solvent-based microextraction for simultaneous preconcentration of herbicides from natural waters with posterior determination by HPLC-DAD. Microchemical Journal, 133: 650–657.

17.    Ballesteros-Gómez, A., Sicilia, M. D. and Rubio, S. (2010). Supramolecular solvents in the extraction of organic compounds. A review. Analytical Chimica Acta, 677: 108–130.

18.    Moradi, M., Kashanaki, R., Borhani, S., Bigdeli, H., Abbasi, N. and Kazemzadeh, A. (2017). Optimization of supramolecular solvent microextraction prior to graphite furnace atomic absorption spectrometry for total selenium determination in food and environmental samples. Journal of Molecular Liquids, 232: 243–250.

19.    Seebunrueng, K., Dejchaiwatana, C., Santaladchaiyakit, Y., and Srijaranai, S. S. (2017). Development of supramolecular solvent based microextraction prior to high performance liquid chromatography for simultaneous determination of phenols in environmental water. RSC Advances, 7: 50143–50149.

20.    Yilmaz, E. and Soylak, M. (2014). Development a novel supramolecular solvent microextraction procedure for copper in environmental samples and its determination by microsampling flame atomic absorption spectrometry. Talanta, 126: 191–195.

21.    Shamsipur, M., Zohrabib, P., and Hashemi, M. (2015). Application of a supramolecular solvent as the carrier for ferrofluid based liquid-phase microextraction for spectro fluorimetric determination of levofloxacin in biological samples. Analytical Methods, 7: 9609–9614.

22.    Ballesteros-Gomez, A., Rubio, S. and Perez-Bendito, D. (2009). Potential of supramolecular solvents for the extraction of contaminants in liquid foods. Journal of Chromatography A, 1216: 530–539.

23.    Rezaei, F., Yamini, Y., Moradi, M. and Daraei, B. (2013). Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Analytical Chimica Acta, 804: 135–142.

24.    Ezoddin, M., Majidi, B. and Abdi, K. (2015). Ultrasound-assisted supramolecular dispersive liquid–liquid microextraction based on solidification of floating organic drops for preconcentration of palladium in water and road dust samples. Journal of Molecular Liquids, 209: 515–519.

25.    López-Jiménez, F. J., Rosales-Marcano, M. and Rubio, S. (2013). Restricted access property supramolecular solvents for combined microextraction of endocrine disruptors in sediment and sample cleanup prior to their quantification by liquid chromatography – tandem mass spectrometry. Journal of Chromatography A, 1303: 1–8.

26.    Yang, D., Li, X., Meng, D., Wang, M. and Yang, Y. (2017). Supramolecular solvents combined with layered double hydroxide-coated magnetic nanoparticles for extraction of bisphenols and 4-tert- octylphenol from fruit juices. Food Chemistry, 237: 870–876.

27.    Dursun, G., Yildiz, E., and Cabuk, H. (2018). Supramolecular solvent-based microextraction of propachlor and prometryn herbicides in soil samples prior to liquid chromatographic analysis. Cumhuriyet Science Journal, 39:833–841.

28.    Rezaei, F., Yamini, Y., Asiabi, H., and Moradi, M. (2015). Determination of diphenylamine residue in fruit samples by supercritical fluid extraction followed by vesicular based-supramolecular solvent microextraction. Journal of Supercritical Fluids, 100:79–85.

29.    Soylak, M., Unsal, Y. E., Yilmaz, E. and Tuzen, M. (2011). Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food Chemical Toxicology, 49:1796–1799

30.    Zhang, Q., Cui, H., Myint, A., Lian, M. and Liu, L. (2005). Sensitive determination of phenolic compounds using high-performance liquid chromatography with cerium (IV)-rhodamine 6G-phenolic compound chemiluminescence detection. Journal of Chromatography A, 1095: 94–101.