Malaysian
Journal of Analytical Sciences Vol 24 No 2 (2020): 209 - 217
CONTROLLED CONCENTRATION OF Mn SALT FOR THE SYNTHESIS OF MANGANESE OXIDE/MESOPOROUS CARBON FILM AS POTENTIAL ELECTRODES FOR SUPERCAPACITOR
(Kepekatan Garam Mn Terkawal terhadap Sintesis Mangan
Oksida/Karbon Filem Berliang Meso sebagai Elektrod Berpotensi bagi
Superkapasitor)
Mahanim Sarif @ Mohd Ali1,3,
Zulkarnain Zainal1,2*, Mohd Zobir Hussein1, Mohd
Haniff Wahid2, Noor Nazihah Bahrudin2
1Materials
Synthesis and Characterization Laboratory, Institute
of Advanced Technology
Department
of
Chemistry, Faculty of Science
Universiti Putra Malaysia, 43400
UPM Serdang, Selangor, Malaysia
3Forest
Product Division,
Forest Research Institute
Malaysia, 52109 Kepong, Selangor, Malaysia
*Corresponding
author: zulkar@upm.edu.my
Received: 15 December 2019;
Accepted: 11 March 2020
Abstract
Manganese oxide (Mn2O3) mesoporous carbon (MPC)
was synthesized by the incipient wetness of impregnation at room temperature
and followed by calcination of 300 °C. The structure and morphology of Mn2O3/MPC were characterized by Fourier
transform infrared (FTIR) spectrum, atomic force microscopy (AFM) and field
emission scanning electron microscopy (FESEM). The electrochemical performance
of synthesized composites was evaluated by cyclic voltammetry (CV),
galvanostatic measurement of charge-discharge (GCD) as well as power and energy
density characteristics. The specific capacitance of the composite electrode
when 10 wt.% Mn salt was coated on the surface of MPC film could
reach 53.59 mF cm-2 as compared to MPC film at only 15.23 mF cm-2.
These are in good agreement with the electrochemical performance improvement
results of the energy and power density recorded for Mn2O3/MPC,
which lead to higher specific capacitance as supported by the CV and GCD
results in 1 M potassium chloride (KCl) of electrolyte. This enhanced
capacitance was attributed to the outstanding electric properties of MPC film
as well as the faradaic redox reactions of manganese oxide as proven by FESEM
and EDX analysis. The results indicate the promising application of the
fabricated Mn2O3/MPC composite as electrodes for
supercapacitors.
Keywords: manganese
oxide, mesoporous carbon, composite, specific capacitance, supercapacitor
Abstrak
Mangan oksida (Mn2O3)
karbon filem berliang meso (MPC) telah disintesis melalui kaedah serapan basah
pada suhu bilik dan diikuti oleh proses pengkalsinan pada suhu 300 °C. Struktur
dan morfologi Mn2O3/MPC dicirikan oleh spektrum
inframerah transformasi Fourier (FTIR), mikroskop kekuatan atom (AFM) dan
mikroskop pengimbasan elektron serta pelepasan medan (FESEM). Prestasi
elektrokimia komposit yang disintesis telah dinilai oleh kitaran voltammetri
(CV), pengukuran pelepasan galvanostatik (GCD) juga ciri-ciri kuasa dan
ketumpatan tenaga. Kapasitan khusus elektrod komposit apabila garam 10 wt.% Mn
dilapisi pada permukaan MPC filem boleh mencapai 53.59 mF cm-2
berbanding dengan MPC filem hanya 15.23 mF cm-2. Ini menyamai dengan
peningkatan prestasi elektrokimia terhadap tenaga dan ketumpatan kuasa yang
dicatatkan untuk Mn2O3/MPC, yang membawa kepada kapasitan
khusus yang lebih tinggi, disokong oleh keputusan CV dan GCD dalam elektrolit 1
M kalium klorida (KCl). Peningkatan kapasitan ini adalah disebabkan oleh
sifat-sifat elektrik yang cemerlang dari MPC filem serta tindak balas redoks
faradaik dari mangan seperti yang dibuktikan juga dalam analisis FESEM dan EDX.
Keputusan menunjukkan fabrikasi komposit Mn2O3/MPC
mempunyai potensi aplikasi sebagai elektrod bagi superkapasitor.
Kata kunci: mangan oksida, karbon berliang meso, komposit, kapasitan
khusus, superkapasitor
References
1.
Li, Y. H., Li, Q. Y., Wang, H. Q.,
Huang, Y. G., Zhang, X. H., Wu, Q., Gao, H. Q. and Yang, J. H. (2015).
Synthesis and electrochemical properties of nickel–manganese oxide on
MWCNTs/CFP substrate as a supercapacitor electrode. Applied Energy, 153:
78-86.
2.
Zhang, Y., Xuan, H., Xu, Y., Guo, B.,
Li, H., Kang, L., Han, P., Wang, D. and Du, Y. (2016). One-step large scale
combustion synthesis mesoporous MnO2/MnCo2O4
composite as electrode material for high-performance supercapacitors. Electrochimica
Acta, 206: 278-290.
3.
Lokhande, V. C., Lokhande, A. C.,
Lokhande, C. D., Hyeok, J. and Ji, T. (2016). Supercapacitive composite metal
oxide electrodes formed with carbon, metal oxides and conducting polymers. Journal
of Alloys Compound, 682: 381-403.
4.
Wang, X., Liu, L., Wang, X., Yi, L., Hu,
C. and Zhang, X. (2011). Mn2O3/carbon aerogel microbead
composites synthesized by in situ coating method for supercapacitors. Materials
Science and Engineering: B, 176(15): 1232-1238.
5.
Worsley, M. A., Pauzauskie, P. J.,
Olson, T. Y., Biener, J., Satcher Jr, J. H. and Baumann, T. F. (2010).
Synthesis of graphene aerogel with high electrical conductivity. Journal of
the American Chemical Society, 132(40): 14067-14069.
6.
Liu, R. and Lee, S. B. (2008). MnO2/poly
(3, 4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition
for electrochemical energy storage. Journal of the American Chemical Society,
130 (10): 2942-2943.
7.
Yu, D. and Dai, L. (2009).
Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. The
Journal of Physical Chemistry Letters, 1(2): 467-470.
8.
Yang, J., Yang, X., Zhong, Y. L. and
Ying, J. Y. (2015). Porous MnO/Mn3O4 nanocomposites for
electrochemical energy storage. Nano Energy, 13: 702–708.
9.
Li, L., Wei, T., Wang, W. and Zhao, X.
S. (2009). Manganese oxide–carbon composite as supercapacitor electrode
materials. Microporous Mesoporous Material, 123(1–3): 260–267.
10.
Lee, Y. J., Park, H. W., Park, S. and
Song, I. K. (2012). Electrochemical properties of Mn-doped activated carbon
aerogel as electrode material for supercapacitor. Current Applied Physics,
12(1): 23-237.
11.
Hu, C. C., Liu, M. J. and Chang, K. H.
(2008). Anodic deposition of hydrous ruthenium oxide for supercapacitors:
Effects of the AcO−concentration, plating temperature, and oxide loading.
Electrochimica Acta, 53 (6): 2679-2687.
12.
Gujar, T. P., Kim, W. Y., Puspitasari,
I., Jung, K. D. and Joo, O. S. (2007). Electrochemically deposited nanograin
ruthenium oxide as a pseudocapacitive electrode. International Journal of
Electrochemical Science, 2: 666-673.
13.
Li, G. R., Feng, Z. P., Ou, Y. N., Wu,
D., Fu, R. and Tong, Y. X. (2010). Mesoporous MnO2/carbon aerogel
composites as promising electrode materials for high-performance
supercapacitors. Langmuir, 26(4): 2209-2213.
14.
Jiang, H., Yang, L., Li, C., Yan, C.,
Lee, P.S. and Ma, J. (2011). High–rate electrochemical capacitors from highly
graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide
hybrid nanowires. Energy & Environmental Science, 4 (5): 1813-1819.
15.
Wang, T., Peng, Z., Wang, Y., Tang, J.
and Zheng, G. (2013). MnO nanoparticle@ mesoporous carbon composites grown on
conducting substrates featuring high-performance lithium-ion battery,
supercapacitor and sensor. Scientific Reports, 3: 2693.
16.
Mitome, T., Hirota, Y., Uchida, Y. and
Nishiyama, N. (2016). Porous structure and pore size control of mesoporous
carbons using a combination of a soft-templating method and a solvent
evaporation technique. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 494: 180-185.
17.
Wang, Q., Zhang, W., Mu, Y., Zhong, L.,
Meng, Y. and Sun, Y. (2014). Synthesis of ordered mesoporous carbons with
tunable pore size by varying carbon precursors via soft-template method. Microporous
and Mesoporous Materials, 197: 109-115.
18. Fisher,
R. A., Watt, M. R. and Ready, W. J. (2013). Functionalized carbon nanotube
supercapacitor electrodes: a review on pseudocapacitive materials. ECS
Journal of Solid State Science and Technology 2(10): 3170-3177.
19. Yang,
J. and Zou, L. (2014). Graphene films of controllable thickness as binder-free
electrodes for high performance supercapacitors. Electrochimica Acta,
130: 791-799.
20. Li,
H., Zhang, X., Ding, R., Qi, L. and Wang, H. (2013). Facile synthesis of
mesoporous MnO2 microspheres for high performance AC//MnO2
aqueous hybrid supercapacitors. Electrochimica Acta, 108: 497-505.
21. Zhang,
C, Zhen G. and Jianxin M. (2013). Self-assembly synthesis of ordered mesoporous
carbon thin film by a dip-coating technique. Microporous and Mesoporous
Materials, 170: 287-92.
22. Kataoka,
S., Yamamoto, T., Endo, A., Nakaiwa, M. and Ohmori, T. (2009). Synthesis and
characterization of mesoporous carbon thin films from phloroglucinol/surfactant
self-assembly. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 347(1-3): 142-145.
23. Wang,
Y. T., Lu, A. H. and Li, W. C. (2012). Mesoporous manganese dioxide prepared
under acidic conditions as high performance electrode material for hybrid
supercapacitors. Microporous and Mesoporous Materials, 153: 247-253.