Malaysian Journal of Analytical Sciences Vol 24 No 2 (2020): 209 - 217

 

 

 

 

CONTROLLED CONCENTRATION OF Mn SALT FOR THE SYNTHESIS OF MANGANESE OXIDE/MESOPOROUS CARBON FILM AS POTENTIAL ELECTRODES FOR SUPERCAPACITOR

 

(Kepekatan Garam Mn Terkawal terhadap Sintesis Mangan Oksida/Karbon Filem Berliang Meso sebagai Elektrod Berpotensi bagi Superkapasitor)

 

Mahanim Sarif @ Mohd Ali1,3, Zulkarnain Zainal1,2*, Mohd Zobir Hussein1, Mohd Haniff Wahid2, Noor Nazihah Bahrudin2

 

1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology

Department of Chemistry, Faculty of Science

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Forest Product Division,

Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia

 

*Corresponding author:  zulkar@upm.edu.my

 

 

Received: 15 December 2019; Accepted: 11 March 2020

 

 

Abstract

Manganese oxide (Mn2O3) mesoporous carbon (MPC) was synthesized by the incipient wetness of impregnation at room temperature and followed by calcination of 300 °C. The structure and morphology of Mn2O3/MPC were characterized by Fourier transform infrared (FTIR) spectrum, atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The electrochemical performance of synthesized composites was evaluated by cyclic voltammetry (CV), galvanostatic measurement of charge-discharge (GCD) as well as power and energy density characteristics. The specific capacitance of the composite electrode when 10 wt.% Mn salt was coated on the surface of MPC film could   reach  53.59 mF cm-2 as compared to MPC film at only 15.23 mF cm-2. These are in good agreement with the electrochemical performance improvement results of the energy and power density recorded for Mn2O3/MPC, which lead to higher specific capacitance as supported by the CV and GCD results in 1 M potassium chloride (KCl) of electrolyte. This enhanced capacitance was attributed to the outstanding electric properties of MPC film as well as the faradaic redox reactions of manganese oxide as proven by FESEM and EDX analysis. The results indicate the promising application of the fabricated Mn2O3/MPC composite as electrodes for supercapacitors.

 

Keywords:  manganese oxide, mesoporous carbon, composite, specific capacitance, supercapacitor

 

Abstrak

Mangan oksida (Mn2O3) karbon filem berliang meso (MPC) telah disintesis melalui kaedah serapan basah pada suhu bilik dan diikuti oleh proses pengkalsinan pada suhu 300 °C. Struktur dan morfologi Mn2O3/MPC dicirikan oleh spektrum inframerah transformasi Fourier (FTIR), mikroskop kekuatan atom (AFM) dan mikroskop pengimbasan elektron serta pelepasan medan (FESEM). Prestasi elektrokimia komposit yang disintesis telah dinilai oleh kitaran voltammetri (CV), pengukuran pelepasan galvanostatik (GCD) juga ciri-ciri kuasa dan ketumpatan tenaga. Kapasitan khusus elektrod komposit apabila garam 10 wt.% Mn dilapisi pada permukaan MPC filem boleh mencapai 53.59 mF cm-2 berbanding dengan MPC filem hanya 15.23 mF cm-2. Ini menyamai dengan peningkatan prestasi elektrokimia terhadap tenaga dan ketumpatan kuasa yang dicatatkan untuk Mn2O3/MPC, yang membawa kepada kapasitan khusus yang lebih tinggi, disokong oleh keputusan CV dan GCD dalam elektrolit 1 M kalium klorida (KCl). Peningkatan kapasitan ini adalah disebabkan oleh sifat-sifat elektrik yang cemerlang dari MPC filem serta tindak balas redoks faradaik dari mangan seperti yang dibuktikan juga dalam analisis FESEM dan EDX. Keputusan menunjukkan fabrikasi komposit Mn2O3/MPC mempunyai potensi aplikasi sebagai elektrod bagi superkapasitor.

 

Kata kunci:  mangan oksida, karbon berliang meso, komposit, kapasitan khusus, superkapasitor

 

References

1.       Li, Y. H., Li, Q. Y., Wang, H. Q., Huang, Y. G., Zhang, X. H., Wu, Q., Gao, H. Q. and Yang, J. H. (2015). Synthesis and electrochemical properties of nickel–manganese oxide on MWCNTs/CFP substrate as a supercapacitor electrode. Applied Energy, 153: 78-86.

2.       Zhang, Y., Xuan, H., Xu, Y., Guo, B., Li, H., Kang, L., Han, P., Wang, D. and Du, Y. (2016). One-step large scale combustion synthesis mesoporous MnO2/MnCo2O4 composite as electrode material for high-performance supercapacitors. Electrochimica Acta, 206: 278-290.

3.       Lokhande, V. C., Lokhande, A. C., Lokhande, C. D., Hyeok, J. and Ji, T. (2016). Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. Journal of Alloys Compound, 682: 381-403.

4.       Wang, X., Liu, L., Wang, X., Yi, L., Hu, C. and Zhang, X. (2011). Mn2O3/carbon aerogel microbead composites synthesized by in situ coating method for supercapacitors. Materials Science and Engineering: B, 176(15): 1232-1238.

5.       Worsley, M. A., Pauzauskie, P. J., Olson, T. Y., Biener, J., Satcher Jr, J. H. and Baumann, T. F. (2010). Synthesis of graphene aerogel with high electrical conductivity. Journal of the American Chemical Society, 132(40): 14067-14069.

6.       Liu, R. and Lee, S. B. (2008). MnO2/poly (3, 4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. Journal of the American Chemical Society, 130 (10): 2942-2943.

7.       Yu, D. and Dai, L. (2009). Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. The Journal of Physical Chemistry Letters, 1(2): 467-470.

8.       Yang, J., Yang, X., Zhong, Y. L. and Ying, J. Y. (2015). Porous MnO/Mn3O4 nanocomposites for electrochemical energy storage. Nano Energy, 13: 702–708.

9.       Li, L., Wei, T., Wang, W. and Zhao, X. S. (2009). Manganese oxide–carbon composite as supercapacitor electrode materials. Microporous Mesoporous Material, 123(1–3): 260–267.

10.    Lee, Y. J., Park, H. W., Park, S. and Song, I. K. (2012). Electrochemical properties of Mn-doped activated carbon aerogel as electrode material for supercapacitor. Current Applied Physics, 12(1): 23-237.

11.    Hu, C. C., Liu, M. J. and Chang, K. H. (2008). Anodic deposition of hydrous ruthenium oxide for supercapacitors: Effects of the AcO−concentration, plating temperature, and oxide loading. Electrochimica Acta, 53 (6): 2679-2687.

12.    Gujar, T. P., Kim, W. Y., Puspitasari, I., Jung, K. D. and Joo, O. S. (2007). Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. International Journal of Electrochemical Science, 2: 666-673.

13.    Li, G. R., Feng, Z. P., Ou, Y. N., Wu, D., Fu, R. and Tong, Y. X. (2010). Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir, 26(4): 2209-2213.

14.    Jiang, H., Yang, L., Li, C., Yan, C., Lee, P.S. and Ma, J. (2011). High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy & Environmental Science, 4 (5): 1813-1819.

15.    Wang, T., Peng, Z., Wang, Y., Tang, J. and Zheng, G. (2013). MnO nanoparticle@ mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor. Scientific Reports, 3: 2693.

16.    Mitome, T., Hirota, Y., Uchida, Y. and Nishiyama, N. (2016). Porous structure and pore size control of mesoporous carbons using a combination of a soft-templating method and a solvent evaporation technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 494: 180-185.

17.    Wang, Q., Zhang, W., Mu, Y., Zhong, L., Meng, Y. and Sun, Y. (2014). Synthesis of ordered mesoporous carbons with tunable pore size by varying carbon precursors via soft-template method. Microporous and Mesoporous Materials, 197: 109-115.

18.    Fisher, R. A., Watt, M. R. and Ready, W. J. (2013). Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials. ECS Journal of Solid State Science and Technology 2(10): 3170-3177.

19.    Yang, J. and Zou, L. (2014). Graphene films of controllable thickness as binder-free electrodes for high performance supercapacitors. Electrochimica Acta, 130: 791-799.

20.    Li, H., Zhang, X., Ding, R., Qi, L. and Wang, H. (2013). Facile synthesis of mesoporous MnO2 microspheres for high performance AC//MnO2 aqueous hybrid supercapacitors. Electrochimica Acta, 108: 497-505.

21.    Zhang, C, Zhen G. and Jianxin M. (2013). Self-assembly synthesis of ordered mesoporous carbon thin film by a dip-coating technique. Microporous and Mesoporous Materials, 170: 287-92.

22.    Kataoka, S., Yamamoto, T., Endo, A., Nakaiwa, M. and Ohmori, T. (2009). Synthesis and characterization of mesoporous carbon thin films from phloroglucinol/surfactant self-assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1-3): 142-145.

23.    Wang, Y. T., Lu, A. H. and Li, W. C. (2012). Mesoporous manganese dioxide prepared under acidic conditions as high performance electrode material for hybrid supercapacitors. Microporous and Mesoporous Materials, 153: 247-253.