Malaysian Journal of Analytical Sciences Vol 24 No 2 (2020): 188 - 196

 

 

 

 

ENZYME CATALYZED ESTERIFICATION OF SUGAR BY THERMOSTABLE T1 LIPASE FROM Geobacillus zalihae IN IONIC LIQUID

 

(Pengesteran Berenzim Gula oleh Lipase Termostabil T1 dari Geobacillus zalihae dalam Cecair Ionik)

 

Emilia Abdulmalek1,2*, Hanim Salami Mohd Saupi1, Syarilaida Zulkefli1, Raja Nor Zaliha Raja Abd Rahman3, Mohd Basyaruddin Abdul Rahman1,2

 

1Integrated Chemical BioPhysics Research, Faculty of Science

2Department of Chemistry, Faculty of Science

3Enzyme and Microbial Technology Research, Department of Microbiology, Faculty of Biotechnology and Biomolecular Science

Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia

 

*Corresponding author:  emilia@upm.edu.my

 

 

Received: 20 November 2019; Accepted: 11 February 2020

 

 

Abstract

Thermostable T1 lipase from Geobacillus zalihae strain was utilized in esterification of various sugars with fatty acids to form fatty acid sugar esters. Fatty acid sugar esters (FASE) are an important class of non-ionic surfactant which possesses good emulsifying, stabilizing and conditioning properties. In this work the esterification reaction was done in [Bmim][BF4] ionic liquid with dimethylsulfoxide (DMSO) as co-solvent. Esterification of galactose with oleic acid was initially screened by varying the conditions (temperature, time, enzyme loading and the fatty acid chain length). It was found that the reaction was optimum at the following conditions: temperature (65 °C), time (120 minutes) and enzyme loading (2% (w/w)) when carried out in mixture of DMSO: [Bmim][BF4] (1:20). Interestingly, the percentage of conversion was not affected by the chain length of the acyl donor (C8 – C18) or the unsaturation degree. When the reaction was repeated with linoleic acid as acyl donor and different acyl acceptor (galactose, glucose, fructose, sucrose, maltose, trehalose and xylitol), sucrose gave the best conversion at 65%. In conclusion, TI lipase showed broad substrate specificity either for the acyl donor or acyl acceptor during the esterification of sugars in ionic liquid.

 

Keywords:  T1 lipase, fatty acid sugar ester, ionic liquid, esterification, [Bmim][BF4]

 

Abstrak

Lipase termostabil T1 dari strain Geobacillus zalihae telah digunakan dalam pengesteran pelbagai gula dengan asid lemak untuk membentuk ester gula asid lemak. Ester gula asid lemak (FASE) adalah kelas surfaktan bukan ionik yang penting yang mempunyai sifat pengemulsi, penstabilan dan penyesuaian yang baik. Dalam kerja ini tindak balas pengesteraan dilakukan dalam cecair ionik [Bmim][BF4] dengan dimetilsulfoksida (DMSO) sebagai pelarut bersama. Pengesteran galaktosa dengan asid oleik pada mulanya disaring dengan mempelbagaikan keadaan (suhu, masa, muatan enzim dan panjang rantai asid lemak.) Ia didapati bahawa tindak balas adalah optimum pada keadaan berikut: suhu (65 °C), masa (120 minutes) dan muatan enzim (2% (w/w)) apabila dijalankan dalam campuran DMSO:[Bmim][BF4] (1:20). Menariknya, peratusan penukaran tidak terjejas oleh panjang rantai asil dari C8 – C18 atau darjah ketaktepuan. Apabila tindak balas diulang dengan asid linoleik sebagai penderma asil dan penerima asil yang berbeza (galaktosa, glukosa, fruktosa, sukrosa, maltosa, trehalosa dan xilitol), sukrosa memberikan penukaran terbaik pada 65%. Kesimpulannya, lipase TI menunjukkan kekhususan substrat yang luas sama ada untuk penderma asil atau penerima asil semasa pengesteran gula dalam cecair ionik.

 

Kata kunci:  lipase T1, ester gula asid lemak, cecair ionik, pengesteran, [Bmim][BF4]

 

References

1.       Leow, T. C., Rahman, R. N. Z. R. A., Basri, M. and Salleh, A. B. (2004). High level expression of thermostable lipase from Geobacillus sp. strain T1. Bioscience, Biotechnology, and Biochemistry, 68(1): 96-103

2.       Rahman, R. N. Z. R. A., Leow, T. C., Salleh, A. B. and Basri, M. (2007). Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiology, 7: 77.

3.       Mozhaev, V. V., Berezin, I. V., and Martinek, K. (1988). Structure-stability relationship in proteins: Fundamental tasks and strategy for the development of stabilized enzyme catalyst for biotechnology. CRC Critical Review in Biochemistry, 173: 147-154.

4.       Baker, I. J. A., Matthews, B., Suares, H., Krodkiewska, I., Furlong, D. N., Grieser, F. and Drummond, C. J. (2000). Sugar fatty acid ester surfactants: Structure and ultimate aerobic biodegradability. Journal of Surfactants and Detergents, 3(1): 1-11.

5.       Staroń, J., Dąbrowski J. M., Cichoń, E. and Guzik, M. (2018) Lactose esters: synthesis and biotechnological applications. Critical Reviews in Biotechnology, 38(2): 245-258

6.       Pyo, S.-H., Chen, J., Ye, R. and Hayes, D. G. (2019). Chapter 10 - Sugar Esters, Editors: Hayes, D. G.,  Solaiman, D. K. Y. and Ashby, R. D.  Biobased Surfactants (Second Edition), AOCS Press, Urbana, USA: pp. 325-363.

7.       Chang, S. W. and Shaw, J. F. (2009). Biocatalysis for the production of carbohydrate esters. New Biotechnology, 26(3–4): 109-116.

8.       Yoo, I. S., Park, S. J. and Yoon, H. H. (2007). Enzymatic synthesis of sugar fatty acid esters. Journal of Industrial and Engineering Chemistry, 13(1): 1-6.

9.       Gumel, A. M., Annuara, M. S. M., Heidelberg, T. and Chisti, Y. (2011). Lipase mediated synthesis of sugar fatty acid esters. Process Biochemistry, 46: 2079-2090.

10.    Kennedy, J. F., Kumar, H., Panesar, P. S., Marwaha, S. S., Goyal, R., Parmar, A. and Kaur, S. (2006). Enzyme-catalyzed regioselective synthesis of sugar esters and related compounds. Journal of Chemical Technology & Biotechnology, 81: 866-876.

11.    Kobayashi, T. (2011). Lipase-catalyzed syntheses of sugar esters in non-aqueous media, Biotechnology Letters, 33: 1911-1919.

12.    Hallett, J. P. and Welton, T. (2011). Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chemical Reviews, 111: 3508-3576.

13.    Yang, Z. and Huang, Z. L. (2012). Enzymatic synthesis of sugar fatty acid esters in ionic liquids. Catalysis Science & Technology, 2: 1767-1775.

14.    Abdulmalek, E., Mohd. Saupi, H. S., Tejo, B. A., Basri, M., Salleh, A. B., Rahman, R. N. Z. R. A. and Abdul Rahman, M. B. (2012). Improved enzymatic synthesis of galactose oleate ester in ionic liquid. Journal of Molecular Catalysis B: Enzymatic, 76: 37-43.

15.    Abdulmalek, E., Hamidon, N. F. and Abdul Rahman, M. B. (2016) Optimization and characterization of lipase catalysed synthesis of xylose caproate ester in organic solvents. Journal of Molecular Catalysis B: Enzymatic, 132: 1-4.

16.    Lee, K. P. and Kim, H. K. (2016). Antibacterial effect of fructose laurate synthesized by Candida antarctica B lipase-mediated transesterification. Journal of Microbiology and Biotechnology, 26(9): 1579-1585.

17.    Shin, D. W., Mai, N. L., Bae, S.-W. and Koo, Y. (2019). Enhanced lipase-catalyzed synthesis of sugar fatty acid esters using supersaturated sugar solution in ionic liquids. Enzyme and Microbial Technology, 126: 18-23.

18.    Sang, H. L., Dung, T. D., Sung, H. H., Chang, W.-J. and Koo, Y.-M. (2008). Lipase-catalyzed synthesis of fatty acid sugar ester using extremely supersaturated sugar solution in ionic liquids. Biotechnology and Bioengineering, 99(1): 1-8.

19.    Ha, S. H., Hiep, N. M., Lee, S. H. and Koo, Y.-M. (2009). Optimization of lipase-catalyzed glucose ester synthesis in ionic liquids. Bioprocess and Biosystems Engineering, 33(1): 63-70.

20.    Pang, N., Gu, S.-S, Wang, J., Cui, H.-S., Wang, F.-Q., Liu, X., Zhao, X.-Y. and Wu, F.-A. (2013). A novel chemoenzymatic synthesis of propyl caffeate using lipase-catalyzed transesterification in ionic liquid. Bioresource Technology, 139: 337-342.

21.    Ju1, X., Li, J., Hou, M. and Tao, J. (2015). A lipase-catalyzed process for green synthesis of temsirolimus. Engineering in Life Sciences, 15: 229-233.

22.    Kumar, A., Dhar, K., Kanwar, S. S., Arora, P. K. (2016), Lipase catalysis in organic solvents: Advantages and applications. Biological Procedures Online, 18: 1-11.

23.    Raku, T., Kitagawa, M., Shimakawa, H. and Tokiwa, Y. (2003). Enzymatic synthesis of trehalose esters having lipophilicity. Journal of Biotechnology, 100(3): 203-208.

24.    Findrik, Z., Megyeri, G., Gubicza, L., Bélafi-Bakó, K., Nemestóthy, N. and Sudar, M. (2016). Lipase catalyzed synthesis of glucose palmitate in ionic liquid. Journal of Cleaner Production, 112(1): 1106- 1111.

25.    Wang, X., Li, D., Qu, M., Durrani, R., Yang, B. and Wang, Y. (2017). Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids. Food Chemistry, 216: 260-267.

26.    Onoja, E., Chandren, S., Razak, F. I. A. and Wahab, R. A. (2018). Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study. Journal of the Taiwan Institute of Chemical Engineers, 91: 105-118.

27.    Yadav, G. D. and Devendran, S. (2012). Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochemistry, 47(3): 496-502.

28.    ChemSpider (Royal Society of Chemistry) http://www.chemspider.com/Chemical-Structure.3756.html [Access online 19th July 2019].

29.    Uribe, S. and Sampedro, J. G. (2003). Measuring solution viscosity and its effect on enzyme activity. Biological Procedures Online, 5(1): 108-115.

30.    Di, X., Zhang, Y., Fu, J., Yu, Q., Wang, Z. and Yuan, Z. (2019) Biocatalytic upgrading of levulinic acid to methyl levulinate in green solvents. Process Biochemistry, 81: 33 – 38

31.    Lee, A., Chaibakhsh, N., Rahman, M. B. A., Basri, M. and Tejo, B. A. (2010). Optimized enzymatic synthesis of levulinate ester in solvent-free system.  Industrial Crops and Products, 32(3): 246-251.

32.    Leow, T. C., Rahman, R. N. Z. R. A., Basri, M. and Salleh, A. B. (2007) A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles, 11(3): 527-535.

33.    Mohamed, R. A., Salleh, A. B., Leow, A. T. C., Yahaya, N. M. and Abdul Rahman, M. B. (2017). Ability of T1 lipase to degrade amorphous P(3HB): Structural and functional study. Molecular Biotechnology, 59: 284.

34.    Ferrer, M., Cruces M. A., Plou, F. J., Bernabé, M. and Ballesteros, A. (2000). A simple procedure for the regioselective synthesis of fatty acid esters of maltose, leucrose, maltotriose and n-dodecyl maltosides. Tetrahedron, 56(24): 4053-4061

35.    Woudenberg-van Oosterom, M., van Rantwijk, F. and Sheldon, R. A. (1996). Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase. Biotechnology and Bioengineering, 49: 328-333.

36.    Jia, C., Zhao, J., Feng, B., Zhang, X. and Xia, W. (2010). A simple approach for the selective enzymatic synthesis of dilauroyl maltose in organic media. Journal of Molecular Catalysis B: Enzymatic, 62(3–4): 265-269.

37.    Tsukamoto, J., Haebel, S., Valença, G. P., Peter, M. G. and Franco, T. T. (2008). Enzymatic direct synthesis of acrylic acid esters of mono- and disaccharides. Journal of Chemical Technology and Biotechnology, 83: 1486-1492.