Malaysian
Journal of Analytical Sciences Vol 24 No 2 (2020): 188 - 196
ENZYME
CATALYZED ESTERIFICATION OF SUGAR BY THERMOSTABLE
T1 LIPASE FROM Geobacillus zalihae IN
IONIC LIQUID
(Pengesteran Berenzim Gula oleh Lipase
Termostabil T1 dari Geobacillus zalihae
dalam Cecair Ionik)
Emilia Abdulmalek1,2*, Hanim Salami Mohd Saupi1,
Syarilaida Zulkefli1, Raja Nor Zaliha Raja Abd Rahman3,
Mohd Basyaruddin Abdul Rahman1,2
1Integrated Chemical BioPhysics Research, Faculty
of Science
2Department of Chemistry, Faculty of Science
3Enzyme and Microbial Technology Research, Department
of Microbiology, Faculty of Biotechnology and Biomolecular Science
Universiti
Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
*Corresponding
author: emilia@upm.edu.my
Received: 20 November 2019;
Accepted: 11 February 2020
Abstract
Thermostable T1
lipase from Geobacillus zalihae strain
was utilized in esterification of various sugars with fatty acids to form fatty
acid sugar esters. Fatty acid sugar esters (FASE) are an important class of
non-ionic surfactant which possesses good emulsifying, stabilizing and
conditioning properties. In this work the esterification reaction was done in
[Bmim][BF4] ionic liquid with dimethylsulfoxide (DMSO) as
co-solvent. Esterification of galactose with oleic acid was initially screened
by varying the conditions (temperature, time, enzyme loading and the fatty acid
chain length). It was found that the reaction was optimum at the following
conditions: temperature
(65 °C), time (120 minutes) and enzyme loading (2% (w/w)) when carried out in
mixture of DMSO: [Bmim][BF4] (1:20). Interestingly, the percentage of
conversion was not affected by the chain length of the acyl donor (C8 – C18) or
the unsaturation degree. When the reaction was repeated with linoleic acid as
acyl donor and different acyl acceptor (galactose, glucose, fructose, sucrose,
maltose, trehalose and xylitol), sucrose gave the best conversion at 65%. In
conclusion, TI lipase showed broad substrate specificity either for the acyl
donor or acyl acceptor during the esterification of sugars in ionic liquid.
Keywords: T1 lipase, fatty acid sugar ester, ionic
liquid, esterification, [Bmim][BF4]
Abstrak
Lipase termostabil T1 dari strain
Geobacillus zalihae telah digunakan dalam pengesteran pelbagai gula dengan
asid lemak untuk membentuk ester gula asid lemak. Ester gula asid lemak (FASE)
adalah kelas surfaktan bukan ionik yang penting yang mempunyai sifat
pengemulsi, penstabilan dan penyesuaian yang baik. Dalam kerja ini tindak balas
pengesteraan dilakukan dalam cecair ionik [Bmim][BF4] dengan
dimetilsulfoksida (DMSO) sebagai pelarut bersama. Pengesteran galaktosa dengan
asid oleik pada mulanya disaring dengan mempelbagaikan keadaan (suhu, masa, muatan
enzim dan panjang rantai asid lemak.) Ia didapati bahawa tindak balas adalah
optimum pada keadaan berikut: suhu (65 °C), masa (120 minutes) dan muatan enzim
(2% (w/w)) apabila dijalankan dalam campuran DMSO:[Bmim][BF4]
(1:20). Menariknya, peratusan penukaran tidak terjejas oleh panjang rantai asil
dari C8 – C18 atau darjah ketaktepuan. Apabila tindak balas diulang dengan asid
linoleik sebagai penderma asil dan penerima asil yang berbeza (galaktosa,
glukosa, fruktosa, sukrosa, maltosa, trehalosa dan xilitol), sukrosa memberikan
penukaran terbaik pada 65%. Kesimpulannya, lipase TI menunjukkan kekhususan substrat yang luas sama
ada untuk penderma asil atau penerima asil semasa pengesteran gula dalam cecair
ionik.
Kata kunci: lipase T1, ester gula asid lemak, cecair ionik, pengesteran, [Bmim][BF4]
References
1.
Leow, T. C., Rahman, R. N. Z. R. A., Basri,
M. and Salleh, A. B. (2004). High level expression of thermostable lipase from Geobacillus
sp. strain T1. Bioscience, Biotechnology,
and Biochemistry, 68(1): 96-103
2.
Rahman, R. N. Z. R. A., Leow, T. C., Salleh,
A. B. and Basri, M. (2007). Geobacillus
zalihae sp. nov., a
thermophilic lipolytic bacterium isolated from palm oil mill effluent in
Malaysia. BMC Microbiology, 7: 77.
3.
Mozhaev, V. V., Berezin, I. V., and
Martinek, K. (1988). Structure-stability relationship in proteins: Fundamental
tasks and strategy for the development of stabilized enzyme catalyst for
biotechnology. CRC Critical Review in
Biochemistry, 173: 147-154.
4.
Baker, I. J. A., Matthews, B., Suares,
H., Krodkiewska, I., Furlong, D. N., Grieser, F. and Drummond, C. J. (2000). Sugar
fatty acid ester surfactants: Structure and ultimate aerobic biodegradability. Journal of Surfactants and Detergents,
3(1): 1-11.
5.
Staroń, J., Dąbrowski J. M.,
Cichoń, E. and Guzik, M. (2018) Lactose esters: synthesis and
biotechnological applications. Critical
Reviews in Biotechnology, 38(2): 245-258
6.
Pyo, S.-H., Chen, J., Ye, R. and Hayes,
D. G. (2019). Chapter 10 - Sugar Esters, Editors: Hayes, D. G., Solaiman, D. K. Y. and Ashby, R. D. Biobased Surfactants (Second Edition), AOCS
Press, Urbana, USA: pp. 325-363.
7.
Chang, S. W. and Shaw, J. F. (2009). Biocatalysis
for the production of carbohydrate esters. New
Biotechnology, 26(3–4): 109-116.
8.
Yoo, I. S., Park, S. J. and Yoon, H. H.
(2007). Enzymatic synthesis of sugar fatty acid esters. Journal of Industrial and Engineering Chemistry, 13(1): 1-6.
9.
Gumel, A. M., Annuara, M. S. M., Heidelberg,
T. and Chisti, Y. (2011). Lipase mediated synthesis of sugar fatty acid esters.
Process Biochemistry, 46: 2079-2090.
10.
Kennedy, J. F., Kumar, H., Panesar, P. S.,
Marwaha, S. S., Goyal, R., Parmar, A. and Kaur, S. (2006). Enzyme-catalyzed
regioselective synthesis of sugar esters and related compounds. Journal of Chemical Technology &
Biotechnology, 81: 866-876.
11.
Kobayashi, T. (2011). Lipase-catalyzed
syntheses of sugar esters in non-aqueous media, Biotechnology Letters, 33: 1911-1919.
12.
Hallett, J. P. and Welton, T. (2011). Room-temperature
ionic liquids: solvents for synthesis and catalysis. 2. Chemical Reviews, 111: 3508-3576.
13.
Yang, Z. and Huang, Z. L. (2012). Enzymatic
synthesis of sugar fatty acid esters in ionic liquids. Catalysis Science & Technology, 2: 1767-1775.
14.
Abdulmalek, E., Mohd. Saupi, H. S.,
Tejo, B. A., Basri, M., Salleh, A. B., Rahman, R. N. Z. R. A. and Abdul Rahman,
M. B. (2012). Improved enzymatic synthesis of galactose oleate ester in ionic
liquid. Journal of Molecular Catalysis B:
Enzymatic, 76: 37-43.
15.
Abdulmalek, E., Hamidon, N. F. and Abdul
Rahman, M. B. (2016) Optimization and characterization of lipase catalysed
synthesis of xylose caproate ester in organic solvents. Journal of Molecular Catalysis B: Enzymatic, 132: 1-4.
16.
Lee, K. P. and Kim, H. K. (2016). Antibacterial
effect of fructose laurate synthesized by Candida antarctica B lipase-mediated
transesterification. Journal of
Microbiology and Biotechnology, 26(9): 1579-1585.
17.
Shin, D. W., Mai, N. L., Bae, S.-W. and Koo,
Y. (2019). Enhanced lipase-catalyzed synthesis of sugar fatty acid esters using
supersaturated sugar solution in ionic liquids. Enzyme and Microbial Technology, 126: 18-23.
18.
Sang, H. L., Dung, T. D., Sung, H. H.,
Chang, W.-J. and Koo, Y.-M. (2008). Lipase-catalyzed synthesis of fatty acid
sugar ester using extremely supersaturated sugar solution in ionic liquids. Biotechnology and Bioengineering, 99(1):
1-8.
19.
Ha, S. H., Hiep, N. M., Lee, S. H. and
Koo, Y.-M. (2009). Optimization of lipase-catalyzed glucose ester synthesis in
ionic liquids. Bioprocess and Biosystems
Engineering, 33(1): 63-70.
20.
Pang, N., Gu, S.-S, Wang, J., Cui, H.-S.,
Wang, F.-Q., Liu, X., Zhao, X.-Y. and Wu, F.-A. (2013). A novel chemoenzymatic
synthesis of propyl caffeate using lipase-catalyzed transesterification in
ionic liquid. Bioresource Technology,
139: 337-342.
21.
Ju1, X., Li, J., Hou, M. and Tao, J.
(2015). A lipase-catalyzed process for green synthesis of temsirolimus. Engineering in Life Sciences, 15: 229-233.
22.
Kumar, A., Dhar, K., Kanwar, S. S.,
Arora, P. K. (2016), Lipase catalysis in organic solvents: Advantages and
applications. Biological Procedures
Online, 18: 1-11.
23.
Raku, T., Kitagawa, M., Shimakawa, H. and
Tokiwa, Y. (2003). Enzymatic synthesis of trehalose esters having
lipophilicity. Journal of Biotechnology,
100(3): 203-208.
24.
Findrik, Z., Megyeri, G., Gubicza, L.,
Bélafi-Bakó, K., Nemestóthy, N. and Sudar, M. (2016). Lipase catalyzed
synthesis of glucose palmitate in ionic liquid. Journal of Cleaner Production, 112(1): 1106- 1111.
25.
Wang, X., Li, D., Qu, M., Durrani, R.,
Yang, B. and Wang, Y. (2017). Immobilized MAS1 lipase showed high
esterification activity in the production of triacylglycerols with n-3
polyunsaturated fatty acids. Food
Chemistry, 216: 260-267.
26.
Onoja, E., Chandren, S., Razak, F. I. A.
and Wahab, R. A. (2018). Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on
magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and
thermodynamic study. Journal of the
Taiwan Institute of Chemical Engineers, 91: 105-118.
27.
Yadav, G. D. and Devendran, S. (2012). Lipase
catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous
medium. Process Biochemistry, 47(3): 496-502.
28.
ChemSpider (Royal Society of Chemistry)
http://www.chemspider.com/Chemical-Structure.3756.html [Access online 19th July
2019].
29.
Uribe, S. and Sampedro, J. G. (2003). Measuring
solution viscosity and its effect on enzyme activity. Biological Procedures Online, 5(1): 108-115.
30.
Di, X., Zhang, Y., Fu, J., Yu, Q., Wang,
Z. and Yuan, Z. (2019) Biocatalytic upgrading of levulinic acid to methyl
levulinate in green solvents. Process
Biochemistry, 81: 33 – 38
31.
Lee, A., Chaibakhsh, N., Rahman, M. B. A.,
Basri, M. and Tejo, B. A. (2010). Optimized enzymatic synthesis of levulinate
ester in solvent-free system. Industrial Crops and Products, 32(3): 246-251.
32.
Leow, T. C., Rahman, R. N. Z. R. A.,
Basri, M. and Salleh, A. B. (2007) A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles, 11(3): 527-535.
33.
Mohamed, R. A., Salleh, A. B., Leow, A. T.
C., Yahaya, N. M. and Abdul Rahman, M. B. (2017). Ability of T1 lipase to
degrade amorphous P(3HB): Structural and functional study. Molecular Biotechnology, 59: 284.
34.
Ferrer, M., Cruces M. A., Plou, F. J.,
Bernabé, M. and Ballesteros, A. (2000). A simple procedure for the regioselective
synthesis of fatty acid esters of maltose, leucrose, maltotriose and n-dodecyl maltosides.
Tetrahedron, 56(24): 4053-4061
35.
Woudenberg-van Oosterom, M., van Rantwijk,
F. and Sheldon, R. A. (1996). Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase. Biotechnology
and Bioengineering, 49: 328-333.
36.
Jia, C., Zhao, J., Feng, B., Zhang, X.
and Xia, W. (2010). A simple approach for the selective enzymatic synthesis of
dilauroyl maltose in organic media. Journal
of Molecular Catalysis B: Enzymatic, 62(3–4): 265-269.
37.
Tsukamoto, J., Haebel, S., Valença, G.
P., Peter, M. G. and Franco, T. T. (2008). Enzymatic direct synthesis of
acrylic acid esters of mono- and disaccharides. Journal of Chemical Technology and Biotechnology, 83: 1486-1492.