Malaysian Journal of Analytical Sciences Vol 24 No 2 (2020): 276 - 287

 

 

 

 

SOURCE DETERMINATION OF PSEUDOEPHEDRINE USING ATTENUATED TOTAL REFLECTANCE FOURIER TRANSFORM INFRARED SPECTROSCOPY COMBINED WITH CHEMOMETRIC ANALYSIS

 

(Penentuan Sumber Pseudoephederin Menggunakan Spektroskopi Atenuasi Pembalikan Transformasi Fourier Digabungkan Dengan Analisis Kemometrik)

 

Ainol Hayah Ahmad Nadzri1, Saravana Kumar Jayaram2, Puteri Nurul Hassanah Anuar1, Noor Zuhartini Md Muslim1, Dzulkiflee Ismail1, Wan Nur Syuhaila Mat Desa1*

 

1Forensic Science Programme, School of Health Sciences,

Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

2 Narcotic Section, Forensic Science Unit,

Chemistry Department, Jalan Sultan 46661 Petaling Jaya, Selangor

 

*Corresponding author:  wannurs@usm.my

 

 

Received: 20 November 2019; Accepted: 27 March 2020

 

 

Abstract

Seizures of pseudoephedrine compound pertaining to clandestine drug laboratories were widely reported since it is abused for illicit amphetamine-type stimulant (ATS) production. In small scale clandestine laboratory, a commercial decongestant tablet is always encountered despite having properties claimed to deter pseudoephedrine extraction as pharmaceutical means to prevent the misuse of the compound. This study aims to investigate the feasibility of discriminating extracted pseudoephedrine powder based on its origin. In this study, five different types in varying strengths and sizes of pseudoephedrine-based tablets samples were extracted with direct and acid-base extraction methods. Identification of extracted pseudoephedrine was done by simple attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). In total, 90 spectra were obtained from 15 batches of samples at six repetitive scans. Spectral selection on characteristic fingerprint regions was performed and subsequently subjected to hierarchical cluster analysis (HCA) and principal component analysis (PCA). In HCA, discrimination among samples was evident at around 77-86% similarity while in PCA, discrimination is presented at 80-93% total variation. Groupings and linkages based on their origin were established. A simple and direct method for identification and source determination of chemically processed pseudoephedrine compounds is demonstrated. This information can be a valuable intelligent tool for forensics and law enforcers to understand precursor material sources hence would be beneficial to disrupt the supply of the compound intended for clandestine operations.

 

Keywords:  pseudoephedrine, clandestine drug laboratory, forensic intelligence

 

Abstrak

Rampasan sebatian pseudoephedrin daripada makmal dadah haram semakin meluas dilaporkan kerana sebatian tersebut telah disalahgunakan dalam menghasilkan dadah perangsang jenis amfetamin (ATS). Dalam makmal dadah haram berskala kecil, pil dekongestan komersial yang mengandungi pseudoephedrin sering ditemui sebagai bahan prekursor alternatif walaupun formulasinya telah diubahsuai untuk menghalang proses pengekstrakan pseudoephedrin dan seterusnya mencegah daripada penyalahgunaan sebatian tersebut. Kajian ini bertujuan untuk menyiasat kebolehlaksanaan untuk mendiskriminasi serbuk pseudoephedrin yang diekstrak berdasarkan kepada sumbernya. Dalam kajian ini, lima jenis tablet yang mengandungi pseudoephedrin dengan pelbagai saiz dan kekuatan telah diekstrak melalui kaedah pengekstrakan secara langsung dan asid-bes. Pengenalpastian sebatian pseudoephedrin yang diekstrak telah dilakukan melalui spektroskopi atenuasi pembalikan dan transformasi Fourier (ATR-FTIR). Secara keseluruhan, 90 spektra telah diperolehi daripada 15 kelompok sampel pada enam imbasan berulang. Pengujian spektra pada kawasan tertentu telah dilakukan dan spektra daripada kawasan terpilih kemudiannya tertakluk kepada analisis kluster hierarki (HCA) dan analisis komponen prinsipal (PCA). Dalam HCA, diskriminasi di antara sampel telah dibuktikan pada sekitar 77-86% persamaan manakala di PCA, diskriminasi dibentangkan pada 80-93% jumlah variasi. Kajian ini menunjukkan penggunaan kaedah secara langsung dan mudah dalam pengenalpastian dan penentuan asal-usul sebatian pseudoephedrin yang telah diproses secara kimia. Maklumat yang diperolehi melalui kajian ini adalah sangat bernilai sebagai alat perisikan kepada penguasa perundangan dan forensik untuk memahami sumber bahan prekursor dengan itu dapat memberi manfaat dalam mengganggu bekalan pseudoephedrine untuk operasi haram.

 

Kata kunci:  pseudoephedrine, makmal dadah haram, perisikan forensik

 

References

1.       Bryan, J. (2012). Pseudoephedrine is a though product to challenge as a nasal decongestant. https://www.pharmaceutical-journal.com. [Access online 01 July 2019].

2.       Silverman, B. (2018). Method and formulation for cold treatment in adults and children with increase safety. US Patent App. 10(046): 052.

3.       International Narcotic Control Board (2015). Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances. United Nation, New York: pp. 1-120.

4.       Brzeczko, A. W., Leech, R. and Stark, J. G. (2013). The advent of a new pseudoephedrine product to combat methamphetamine abuse. The American Journal of Drug and Alcohol Abuse, 39(5): 284-290.

5.       Maheux, C. R. and Copeland, C. R. (2010). Characterization of three methcathinone analogs: 4 methylmethcathinone, methylone, and bk-MBDB. Microgram Journal, 7(2): 42-49.

6.       Roggo, Y., Chalus, P., Maurer, L., Lema-Martinez, C., Edmond, A. and Jent, N. (2007). A review of infrared spectroscopy and chemometrics in pharmaceutical technologies. Journal of Pharmaceutical and Biomedical Analysis, 44(3): 683-700.

7.       Deisingh, A. K. (2005). Pharmaceutical counterfeiting. Analyst, 130(1): 271-279.

8.       Hodges, C. M. and Akhavan, J. (1990). The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives. Spectrocimica Act, 46(2): 303-307.

9.       Baran, O. (2005). Determination of narcotic and psychotropic substance by using infrared spectroscopy. Thesis of Master of Science, Middle East Technical University, Turkey.

10.    Goh, C. Y., Van Bronswijk, W. and Priddis, C. (2008). Rapid non-destructive on-site screening of methylamphetamine seizures by attenuated total reflection Fourier transform infrared spectroscopy. Applied Spectroscopic, 62(6): 640-648.

11.    Melucci, D., Monti, D., D’Elia, M. and Luciano, G. (2012). Rapid in situ repeatable analysis of drugs in powder form using reflectance near-infrared spectroscopy and multivariate calibration. Journal of Forensic Science, 57(1): 86-92.

12.    Rodrigues, N. V. S., Cardoso, E. M., Andrade, M. V. O., Donnici, C. L. and Sena, M. M. (2013). Analysis of seized cocaine samples by using chemometric method and FTIR spectroscopy. Journal of the Brazilian Chemical Society, 24(3): 507-517.

13.    Pereira, L. S. A., Lisboa, F. L. C., Neto, J. C., Valladao, F. N. and Sena, M. M. (2017). Direct classification of new psychoactive substances in seized blotter papers by ATR-FTIR and multivariate discriminant analysis. Microchemical Journal, 133(1): 96-103.

14.    Calvo, N. L., Kaufman, T. S. and Maggio, R. M. (2015). A PCA-based chemometrics-assisted ATR-FTIR approach for the classification of polymorphs of cimetidine: Application to physical mixtures and tablets. Journal of Pharmaceutical and Biomedical Analysis, 107(1): 419-425.

15.    Mohamad Asri, M. N., Mat Desa, W. N. S. and Ismail, D. (2017). Raman spectroscopy of ballpoint-pen inks using chemometric techniques. Australian Journal of Forensic Science, 49(2): 175-185.

16.    Ismail, D., Austada, Z. and Mat Desa, W. N. S. (2014). Ultra-violet and visible (UV-VIS) spectroscopy and chemometrics techniques for forensic analysis of ballpoint pen inks: A preliminary study. Malaysian Journal of Forensic Science, 5(1): 47-52.

17.    Sondermann, N. and Kovar, K. A. (1999). Screening experiments of ecstasy street samples using near-infrared spectroscopy. Forensic Science International, 106(3): 147-156.

18.    Moros, J., Galipienso, N., Vilches, R., Garrigues, M. and De La Guardia, S. (2008). Nondestructive direct determination of heroin in seized illicit street drugs by diffuse reflectance near-infrared spectroscopy. Analytical Chemistry, 80(19): 7257-7265.

19.    Graf, W. F., Pearson, J. R., Appadoo, D. R.T., Robertson, E. G. and Ennis, C. (2020). The prediction of far-infrared spectra for molecular crystals of forensic interest- Phenylethylamine, ephedrine and pseudoephedrine. Forensic Chemistry, 17(1): 1-11.

20.    Formula, C. and Weight, M. (2005). Scientific working group for the analysis of seized drugs (SWGDRUG. Access from http://forensics.org.my/pdf/fssmVol.6No.1/Article 04.pdf. [Access online 02 July 19].

21.    Miao, L., Liu, Y., Li, H., Qi, Y. and Lu, F. (2017). Two-dimensional correlation infrared spectroscopy applied to the identification of ephedrine and pseudoephedrine in illegally adulterated slimming herbal products. Drug Testing and Analysis, 9 (2): 221-229.

22.    Hughes, J., Ayoko, G., Collett, S. and Golding, G. (2013). Rapid quantification of methamphetamine: Using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Chemometrics. PLoS ONE, 8(7): e69609.

23.    Nic Daeid, N. and Waddell, R. J. H. (2005). The analytical and chemometrics procedures used to profile illicit drug seizures. Talanta 67(2): 280-285.

24.    Mat Desa, W. N. S., Nic Daeid, N., Dzulkiflee I. and Savage, K. (2020). Application of unsupervised chemometric analysis and self-organizing feature map (SOFM) for the classification of lighter fuels. Analytical Chemistry 82(1): 6395-6640.

25.    Mat Desa, W. N. S., Ismail, D. and Nic Daeid, N. (2011). Classification and source determination of medium petroleum distillates by chemometric and artificial neural networks: A self-organizing feature approach. Analytical Chemistry 83(2): 7745-7754.