Malaysian
Journal of Analytical Sciences Vol 24 No 2 (2020): 276 - 287
SOURCE
DETERMINATION OF PSEUDOEPHEDRINE
USING ATTENUATED TOTAL REFLECTANCE FOURIER TRANSFORM INFRARED SPECTROSCOPY COMBINED WITH CHEMOMETRIC
ANALYSIS
(Penentuan Sumber Pseudoephederin Menggunakan Spektroskopi Atenuasi Pembalikan Transformasi Fourier Digabungkan Dengan Analisis Kemometrik)
Ainol Hayah Ahmad Nadzri1, Saravana Kumar Jayaram2,
Puteri Nurul Hassanah Anuar1, Noor Zuhartini Md
Muslim1, Dzulkiflee Ismail1, Wan Nur Syuhaila
Mat Desa1*
1Forensic
Science Programme, School of Health Sciences,
Universiti Sains Malaysia, 16150 Kubang
Kerian, Kelantan, Malaysia
2
Narcotic Section, Forensic Science Unit,
Chemistry Department, Jalan Sultan 46661
Petaling Jaya, Selangor
*Corresponding
author: wannurs@usm.my
Received: 20 November 2019;
Accepted: 27 March 2020
Abstract
Seizures of pseudoephedrine compound pertaining
to clandestine drug laboratories were widely reported since it is abused for
illicit amphetamine-type stimulant (ATS) production. In small scale clandestine
laboratory, a commercial decongestant tablet is always encountered despite
having properties claimed to deter pseudoephedrine extraction as pharmaceutical
means to prevent the misuse of the compound. This study aims to investigate the
feasibility of discriminating extracted pseudoephedrine powder based on its
origin. In this study, five different types in varying strengths and sizes of
pseudoephedrine-based tablets samples were extracted with direct and acid-base
extraction methods. Identification of extracted pseudoephedrine was done by
simple attenuated total reflection Fourier transform infrared spectroscopy
(ATR-FTIR). In total, 90 spectra were obtained from 15 batches of samples at six
repetitive scans. Spectral selection on characteristic fingerprint regions was
performed and subsequently subjected to hierarchical cluster analysis (HCA) and
principal component analysis (PCA). In HCA, discrimination among samples was
evident at around 77-86% similarity while in PCA, discrimination is presented
at 80-93% total variation. Groupings and linkages based on their origin were
established. A simple and direct method for identification and source
determination of chemically processed pseudoephedrine compounds is
demonstrated. This information can be a valuable intelligent tool for forensics
and law enforcers to understand precursor material sources hence would be
beneficial to disrupt the supply of the compound intended for clandestine
operations.
Keywords: pseudoephedrine, clandestine drug laboratory,
forensic intelligence
Abstrak
Rampasan sebatian pseudoephedrin
daripada makmal dadah haram semakin meluas dilaporkan kerana sebatian tersebut
telah disalahgunakan dalam menghasilkan dadah perangsang jenis amfetamin (ATS).
Dalam makmal dadah haram berskala kecil, pil dekongestan komersial yang
mengandungi pseudoephedrin sering ditemui sebagai bahan prekursor alternatif
walaupun formulasinya telah diubahsuai untuk menghalang proses pengekstrakan
pseudoephedrin dan seterusnya mencegah daripada penyalahgunaan sebatian
tersebut. Kajian ini bertujuan untuk menyiasat
kebolehlaksanaan untuk mendiskriminasi serbuk pseudoephedrin yang diekstrak
berdasarkan kepada sumbernya. Dalam kajian ini, lima jenis tablet yang
mengandungi pseudoephedrin dengan pelbagai saiz dan kekuatan telah diekstrak
melalui kaedah pengekstrakan secara langsung dan asid-bes. Pengenalpastian
sebatian pseudoephedrin yang diekstrak telah dilakukan melalui spektroskopi
atenuasi pembalikan dan transformasi Fourier (ATR-FTIR). Secara keseluruhan, 90
spektra telah diperolehi daripada 15 kelompok sampel pada enam imbasan
berulang. Pengujian spektra pada kawasan tertentu telah dilakukan dan spektra
daripada kawasan terpilih kemudiannya tertakluk kepada analisis kluster
hierarki (HCA) dan analisis komponen prinsipal (PCA). Dalam HCA, diskriminasi
di antara sampel telah dibuktikan pada sekitar 77-86% persamaan manakala di
PCA, diskriminasi dibentangkan pada 80-93% jumlah variasi. Kajian ini
menunjukkan penggunaan kaedah secara langsung dan mudah dalam pengenalpastian
dan penentuan asal-usul sebatian pseudoephedrin yang telah diproses secara
kimia. Maklumat yang diperolehi melalui kajian ini adalah sangat bernilai
sebagai alat perisikan kepada penguasa perundangan dan forensik untuk memahami
sumber bahan prekursor dengan itu dapat memberi manfaat dalam mengganggu
bekalan pseudoephedrine untuk operasi haram.
Kata kunci: pseudoephedrine,
makmal dadah haram, perisikan forensik
References
1.
Bryan, J. (2012). Pseudoephedrine is a
though product to challenge as a nasal decongestant.
https://www.pharmaceutical-journal.com. [Access online 01 July 2019].
2.
Silverman, B. (2018). Method and
formulation for cold treatment in adults and children with increase safety. US Patent App.
10(046): 052.
3.
International Narcotic Control Board
(2015). Precursors and chemicals frequently used in the illicit manufacture of
narcotic drugs and psychotropic substances. United Nation, New York: pp. 1-120.
4.
Brzeczko, A. W., Leech, R. and Stark, J.
G. (2013). The advent of a new pseudoephedrine product to combat
methamphetamine abuse. The American
Journal of Drug and Alcohol Abuse, 39(5): 284-290.
5.
Maheux, C. R. and Copeland, C. R.
(2010). Characterization of three methcathinone analogs: 4 methylmethcathinone,
methylone, and bk-MBDB. Microgram Journal,
7(2): 42-49.
6.
Roggo, Y., Chalus, P., Maurer, L.,
Lema-Martinez, C., Edmond, A. and Jent, N. (2007). A review of infrared
spectroscopy and chemometrics in pharmaceutical technologies. Journal of Pharmaceutical and Biomedical
Analysis, 44(3): 683-700.
7.
Deisingh, A. K. (2005). Pharmaceutical
counterfeiting. Analyst, 130(1):
271-279.
8.
Hodges, C. M. and Akhavan, J. (1990).
The use of Fourier transform Raman spectroscopy in the forensic identification
of illicit drugs and explosives. Spectrocimica
Act, 46(2): 303-307.
9.
Baran, O. (2005). Determination of
narcotic and psychotropic substance by using infrared spectroscopy. Thesis of
Master of Science, Middle East Technical University, Turkey.
10.
Goh, C. Y., Van Bronswijk, W. and
Priddis, C. (2008). Rapid non-destructive on-site screening of
methylamphetamine seizures by attenuated total reflection Fourier transform
infrared spectroscopy. Applied Spectroscopic, 62(6): 640-648.
11.
Melucci, D., Monti, D., D’Elia, M. and
Luciano, G. (2012). Rapid in situ repeatable analysis of drugs in powder form
using reflectance near-infrared spectroscopy and multivariate calibration. Journal
of Forensic Science, 57(1):
86-92.
12.
Rodrigues, N. V. S., Cardoso, E. M.,
Andrade, M. V. O., Donnici, C. L. and Sena, M. M. (2013). Analysis of seized
cocaine samples by using chemometric method and FTIR spectroscopy. Journal of the Brazilian Chemical
Society, 24(3):
507-517.
13.
Pereira, L. S. A., Lisboa, F. L. C.,
Neto, J. C., Valladao, F. N. and Sena, M. M. (2017). Direct classification of
new psychoactive substances in seized blotter papers by ATR-FTIR and
multivariate discriminant analysis. Microchemical
Journal, 133(1): 96-103.
14.
Calvo, N. L., Kaufman, T. S. and Maggio,
R. M. (2015). A PCA-based chemometrics-assisted ATR-FTIR approach for the
classification of polymorphs of cimetidine: Application to physical mixtures
and tablets. Journal of Pharmaceutical
and Biomedical Analysis, 107(1):
419-425.
15.
Mohamad Asri, M. N., Mat Desa, W. N. S.
and Ismail, D. (2017). Raman spectroscopy of ballpoint-pen inks using
chemometric techniques. Australian Journal of Forensic Science, 49(2):
175-185.
16.
Ismail, D., Austada, Z. and Mat Desa, W.
N. S. (2014). Ultra-violet and visible (UV-VIS) spectroscopy and chemometrics
techniques for forensic analysis of ballpoint pen inks: A preliminary study. Malaysian
Journal of Forensic Science, 5(1): 47-52.
17.
Sondermann, N. and Kovar, K. A. (1999).
Screening experiments of ecstasy street samples using near-infrared
spectroscopy. Forensic Science International, 106(3): 147-156.
18.
Moros, J., Galipienso, N., Vilches, R.,
Garrigues, M. and De La Guardia, S. (2008). Nondestructive direct determination
of heroin in seized illicit street drugs by diffuse reflectance near-infrared
spectroscopy. Analytical Chemistry, 80(19): 7257-7265.
19.
Graf, W. F., Pearson, J. R., Appadoo, D.
R.T., Robertson, E. G. and Ennis, C. (2020). The prediction of far-infrared
spectra for molecular crystals of forensic interest- Phenylethylamine,
ephedrine and pseudoephedrine. Forensic
Chemistry, 17(1): 1-11.
20.
Formula, C. and Weight, M. (2005). Scientific working group for the
analysis of seized drugs (SWGDRUG. Access from
http://forensics.org.my/pdf/fssmVol.6No.1/Article 04.pdf. [Access online 02
July 19].
21.
Miao, L., Liu, Y., Li, H., Qi, Y. and Lu, F. (2017). Two-dimensional
correlation infrared spectroscopy applied to the identification of ephedrine
and pseudoephedrine in illegally adulterated slimming herbal products. Drug Testing and Analysis, 9 (2): 221-229.
22.
Hughes, J., Ayoko, G., Collett, S. and Golding, G. (2013). Rapid
quantification of methamphetamine: Using attenuated total reflectance Fourier transform infrared
spectroscopy (ATR-FTIR) and Chemometrics. PLoS
ONE, 8(7): e69609.
23.
Nic Daeid, N. and Waddell, R. J. H. (2005). The analytical and
chemometrics procedures used to profile illicit drug seizures. Talanta 67(2): 280-285.
24.
Mat Desa, W. N. S., Nic Daeid, N.,
Dzulkiflee I. and Savage, K. (2020). Application of unsupervised chemometric
analysis and self-organizing feature map (SOFM) for the classification of
lighter fuels. Analytical Chemistry
82(1): 6395-6640.
25.
Mat Desa, W. N. S., Ismail, D. and Nic
Daeid, N. (2011). Classification and source determination of medium petroleum
distillates by chemometric and artificial neural networks: A self-organizing
feature approach. Analytical Chemistry
83(2): 7745-7754.