Malaysian Journal of Analytical Sciences Vol 24 No 2 (2020): 266 - 275

 

 

 

 

ELECTROSYNTHESIS OF SILVER OXIDE DEPOSITED ONTO HOT SPRING MUD WITH ENHANCED DEGRADATION OF CONGO RED

 

(Elektrosintesis Perak Oksida Disokong Pada Lumpur Air Panas Dengan Peningkatan Degradasi Congo Merah)

 

Muhammad Farhan Hanafi, Ahmad Norsyazwan Mustafa, Norzahir Sapawe*

 

Universiti Kuala Lumpur Branch Campus

Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Vendor City, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia.

 

*Corresponding author:  norzahir@unikl.edu.my

 

 

Received: 28 April 2019; Accepted: 18 February 2020

 

 

Abstract

AgO-supported hot spring mud (AgO-HSM) catalyst was prepared by introducing AgO onto HSM support through electrochemical method. The effect of preparation methods on the physical properties of the catalyst was studied. The interaction between silver species and HSM during the electrochemical process affected the AgO-HSM structure. The amount of 0.2 g L−1 of 11 wt.% AgO-HSM was the optimum dosage for 10 mg L−1 Congo red (CR), which resulted in 98.2% of maximum degradation after 2 hours of contact time at pH 5 under fluorescent light. This study showed that the kinetics followed a pseudo-first order Langmuir–Hinshelwood model with the calculated values of Kr and KLH were 172.41 mg L−1 h−1 and 0.005 L mg−1, respectively. The measurements of the mineralization of CR by COD and BOD5 analysis were 38.4% and 61.1%, respectively, before and after reaction. Therefore, AgO-HSM could be a promising catalyst for the degradation of various dyes in wastewater.

 

Keywords:  AgO-HSM, electrochemical, degradation, Congo red, light irradiation

 

Abstrak

Mangkin AgO yang disokong pada lumpur air panas (AgO-HSM) telah disediakan dengan memperkenalkan AgO ke atas sokongan HSM melalui kaedah elektrokimia. Kesan kaedah penyediaan sifat fizikal mangkin telah dikaji. Interaksi antara spesis perak dan HSM semasa elektrokimia didapati mempengaruhi struktur AgO-HSM. Sejumlah 0.2 gL-1 dari 11% berat AgO-HSM didapati sebagai dos optimum untuk 10 mgL-1 Congo merah (CR), yang mengakibatkan 98.2% degradasi maksimum selepas 2 jam masa sentuhan pada pH 5 di bawah cahaya pendarfluor. Kajian ini menunjukkan bahawa kesan kinetik mengikut model Langmuir-Hinshelwood dengan pseudo-pertama dengan nilai kiraan Kr dan KLH masing-masing ialah 172.41 mgL-1h-1 dan 0.005 Lmg-1. Pengukuran mineralisasi CR oleh COD dan BOD5 adalah 38.4% dan 61.1%, sebelum dan selepas tindak balas. Oleh itu, AgO-HSM boleh menjadi mangkin yang menjanjikan degradasi pelbagai pewarna dalam air kumbahan.

 

Keywords:  AgO-HSM, elektrokimia, degradasi, Congo merah, penyinaran cahaya

 

References

1.       Sima, J. and Hasal, P. (2013). Photocatalytic degradation of textile dyes in a TiO2/UV system. Chemical Engineering Transactions, 32: 79-84.

2.       Sapawe, N., Jalil, A. A., Triwahyono, S., Adam, S. H., Jaafar, N. F. and Satar, M. A. H. (2012). Isomorphous substitution of Zr in the framework of aluminosilicate HY by an electrochemical method: Evaluation by methylene blue decolorization. Applied Catalysis B: Environmental, 125: 311-323.

3.       Sapawe, N., Jalil, A. A., Triwahyono, S., Sah, R. N. R. A., Jusoh, N. W. C. and Hairom, N. H. H. (2013). Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of Si-O-Zn bonds. Applied Catalysis A: General, 456: 144-158.

4.       Gopalpur, N. (2011). Organic synthesis using clay and clay-supported catalysts. Applied Clay Science, 53: 106-138.

5.       Kumar, P., Govindaraju, M., Senthamilselvi, S. and Premkumar, K. (2013). Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids and Surfaces B: Biointerfaces, 103: 658-661.

6.       Albiter, E., Valenzuela, M. A., Alfaro, S., Valverde-Aguilar, G. and Martı´nez-Pallares, F. M. (2015). Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties. Journal of Saudi Chemical Society, 19: 563-573.

7.   Sapawe, N., Rustam, M. A., Mahadzir, M. H. H., Lani, M. K. E. M., Raidin, A. and Hanafi, M. F. (2019). A novel approach of in-situ electrobiosynthesis of metal oxide nanoparticles using crude plant extract as main medium for supporting electrolyte. Materials Today: Proceedings19(4): 1441-1445.

8.       Hanafi, M. F., Sapawe, N., Rahim, M. Z. A., Rahman, N. N., Rahman, A. H. A. and Ahmad, A. A. (2016). Performance of EGZrO2-EGFe2O3/HY as photocatalyst and its efficacy in decolorization of dye-contaminants. Malaysian Journal of Analytical Sciences, 20(5): 1052-1058.

9.       Hanafi, M. F. and Sapawe, N. (2018). Remarkable degradation of methyl orange by tetragonal zirconia catalyst. Materials Today: Proceedings5(10): 21849-21852.

10.    Hanafi, M.F. and Sapawe, N. (2019). The potential of ZrO2 catalyst toward degradation of dyes and phenolic compound. Materials Today: Proceedings, 19(4): 1524-1528.

11.    Hanafi, M. F. and Sapawe, N. (2019). Electrosynthesis of ZrO2 nanoparticles with enhanced removal of phenolic compound. Materials Today: Proceedings, 19(4), 1529-1532.

12.    Hanafi, M. F. and Sapawe, N. (2019). Effect of calcination temperature on the structure and catalytic performance of ZrO2 catalyst in phenol degradation. Materials Today: Proceedings19(4): 1533-1536.

13.    Hanafi, M. F. and Sapawe, N. (2019). Electrogenerated zirconia (EGZrO2) nanoparticles as recyclable catalyst for effective photocatalytic degradation of phenol. Materials Today: Proceedings, 19(4): 1537-1540.

14.    Sapawe, N. and Hanafi, M. F. (2015). Facile one-pot electrosynthesis of high photoreactive hexacoordinated Si with Zr and Zn catalyst. RSC Advances5(92): 75141-75144.

15.    Sapawe, N. (2015). Hybridization of zirconia, zinc and iron supported on HY zeolite as a solar-based catalyst for the rapid decolorization of various dyes. New Journal of Chemistry, 39(6): 4526-4533.

16.    Sapawe, N. (2015). Effective solar-based iron oxide supported HY zeolite catalyst for the decolorization of organic and simulated dyes. New Journal of Chemistry39(8): 6377-6387.

17.    Purkait, M. K., Maiti, A., Das Gupta, S. and De, S. (2007). Removal of Congo Red using activated carbon and its regeneration. Journal Hazardous Materials, 145: 287-295.

18.    Grzechulska, J. and Morawski, A.W. (2002). Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Applied Catalysis B: Environmental, 36: 45-51.

19.    Bokare, A. D., Chikate, R. C., Rode, C. V. and Paknikar, K. M.  (2008). Iron-nickel bimetallic nanopartilcles for reductive degradation of azo dye Orange G in aqueous solution, Applied Catalysis B: Environmental, 79: 270-278.

20.    Wang, C.C., Lee, C.K., Lyu, M.D., & Juang, L.C (2008). Photocatalytic degradation of C.I. basic violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes Pigments, 76, 817-824.

21.    Sapawe, N., Jalil, A. A. and Triwahyono, S. (2013). One-pot electro-synthesis of ZrO2–ZnO/HY nanocomposite for photocatalytic decolorization of various dye-contaminants. Chemical Engineering Journal, 225: 254-265.

22.    Sun, J., Wang, X., Sun, J., Sun, R. and Qiao, L. (2006). Photocatalytic degradation and kinetic of Orange G using nano-sizes Sn(IV)/TiO2/AC photocatalyst. Journal Molecules Catalysis A: Chemical, 260: 241-246.