Malaysian
Journal of Analytical Sciences Vol 24 No 2 (2020): 266 - 275
ELECTROSYNTHESIS
OF SILVER OXIDE DEPOSITED ONTO HOT SPRING MUD WITH ENHANCED DEGRADATION OF CONGO RED
(Elektrosintesis Perak Oksida Disokong Pada Lumpur Air
Panas Dengan Peningkatan Degradasi Congo Merah)
Muhammad Farhan
Hanafi, Ahmad Norsyazwan Mustafa, Norzahir Sapawe*
Universiti Kuala Lumpur Branch Campus
Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Vendor City,
Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia.
*Corresponding
author: norzahir@unikl.edu.my
Received: 28 April 2019;
Accepted: 18 February 2020
Abstract
AgO-supported hot spring mud (AgO-HSM)
catalyst was prepared by introducing AgO onto HSM support through
electrochemical method. The effect of preparation methods on the physical
properties of the catalyst was studied. The interaction between silver species
and HSM during the electrochemical process affected the AgO-HSM structure. The
amount of 0.2 g L−1 of 11 wt.% AgO-HSM was the optimum dosage
for 10 mg L−1 Congo red (CR), which resulted in 98.2% of
maximum degradation after 2 hours of contact time at pH 5 under fluorescent
light. This study showed that the kinetics followed a pseudo-first order
Langmuir–Hinshelwood model with the calculated values of Kr and KLH
were 172.41 mg L−1 h−1 and 0.005 L mg−1,
respectively. The measurements of the mineralization of CR by COD and BOD5
analysis were 38.4% and 61.1%, respectively, before and after reaction.
Therefore, AgO-HSM could be a promising catalyst for the degradation of various
dyes in wastewater.
Keywords: AgO-HSM, electrochemical, degradation,
Congo red, light irradiation
Abstrak
Mangkin AgO yang disokong pada lumpur air panas (AgO-HSM) telah disediakan
dengan memperkenalkan AgO ke atas sokongan HSM melalui kaedah elektrokimia.
Kesan kaedah penyediaan sifat fizikal mangkin telah dikaji. Interaksi antara
spesis perak dan HSM semasa elektrokimia didapati mempengaruhi struktur
AgO-HSM. Sejumlah 0.2 gL-1 dari 11% berat AgO-HSM didapati sebagai
dos optimum untuk 10 mgL-1 Congo merah (CR), yang mengakibatkan
98.2% degradasi maksimum selepas 2 jam masa sentuhan pada pH 5 di bawah cahaya
pendarfluor. Kajian ini menunjukkan bahawa kesan kinetik mengikut model
Langmuir-Hinshelwood dengan pseudo-pertama dengan nilai kiraan Kr dan KLH
masing-masing ialah 172.41 mgL-1h-1 dan 0.005 Lmg-1.
Pengukuran mineralisasi CR oleh COD dan BOD5 adalah 38.4% dan 61.1%,
sebelum dan selepas tindak balas. Oleh itu, AgO-HSM boleh menjadi mangkin yang
menjanjikan degradasi pelbagai pewarna dalam air kumbahan.
Keywords: AgO-HSM,
elektrokimia, degradasi, Congo merah, penyinaran cahaya
References
1. Sima,
J. and Hasal, P. (2013). Photocatalytic degradation of textile dyes in a TiO2/UV
system. Chemical Engineering Transactions, 32: 79-84.
2. Sapawe, N., Jalil, A. A., Triwahyono, S.,
Adam, S. H., Jaafar, N. F. and Satar, M. A. H. (2012). Isomorphous substitution of Zr in the framework of aluminosilicate
HY by an electrochemical method: Evaluation by methylene blue decolorization. Applied Catalysis B: Environmental, 125:
311-323.
3. Sapawe, N., Jalil, A. A., Triwahyono, S., Sah,
R. N. R. A., Jusoh, N. W. C. and Hairom, N. H. H. (2013). Electrochemical strategy for grown ZnO nanoparticles
deposited onto HY zeolite with enhanced photodecolorization of methylene blue:
Effect of the formation of Si-O-Zn bonds. Applied
Catalysis A: General, 456: 144-158.
4. Gopalpur,
N. (2011). Organic synthesis using clay and clay-supported catalysts. Applied
Clay Science, 53: 106-138.
5. Kumar,
P., Govindaraju, M., Senthamilselvi, S. and Premkumar, K. (2013).
Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles
synthesized from Ulva lactuca. Colloids and Surfaces B: Biointerfaces,
103: 658-661.
6. Albiter,
E., Valenzuela, M. A., Alfaro, S., Valverde-Aguilar, G. and
Martı´nez-Pallares, F. M. (2015). Photocatalytic deposition of Ag
nanoparticles on TiO2: Metal precursor effect on the structural and
photoactivity properties. Journal of Saudi Chemical Society, 19:
563-573.
7. Sapawe,
N., Rustam, M. A., Mahadzir, M. H. H., Lani, M. K. E. M., Raidin, A. and
Hanafi, M. F. (2019). A novel approach of in-situ electrobiosynthesis of metal oxide nanoparticles
using crude plant extract as main medium for supporting electrolyte. Materials Today: Proceedings, 19(4): 1441-1445.
8. Hanafi, M. F., Sapawe, N., Rahim, M. Z. A., Rahman, N. N.,
Rahman, A. H. A. and Ahmad, A. A. (2016). Performance of EGZrO2-EGFe2O3/HY
as photocatalyst and its efficacy in decolorization of dye-contaminants. Malaysian
Journal of Analytical Sciences, 20(5): 1052-1058.
9. Hanafi, M. F. and Sapawe, N. (2018). Remarkable degradation
of methyl orange by tetragonal zirconia catalyst. Materials Today: Proceedings, 5(10): 21849-21852.
10. Hanafi, M.F. and Sapawe, N. (2019). The potential of ZrO2
catalyst toward degradation of dyes and phenolic compound. Materials Today: Proceedings, 19(4): 1524-1528.
11. Hanafi, M. F. and Sapawe, N. (2019). Electrosynthesis of ZrO2
nanoparticles with enhanced removal of phenolic compound. Materials Today: Proceedings, 19(4), 1529-1532.
12. Hanafi, M. F. and Sapawe, N. (2019). Effect of calcination
temperature on the structure and catalytic performance of ZrO2
catalyst in phenol degradation. Materials
Today: Proceedings, 19(4):
1533-1536.
13. Hanafi, M. F. and Sapawe, N. (2019). Electrogenerated zirconia (EGZrO2) nanoparticles as recyclable
catalyst for effective photocatalytic degradation of phenol. Materials Today:
Proceedings, 19(4):
1537-1540.
14. Sapawe, N. and Hanafi, M. F. (2015). Facile one-pot
electrosynthesis of high photoreactive hexacoordinated Si with Zr and Zn
catalyst. RSC Advances, 5(92): 75141-75144.
15. Sapawe, N. (2015). Hybridization of zirconia, zinc and iron
supported on HY zeolite as a solar-based catalyst for the rapid decolorization
of various dyes. New Journal of Chemistry, 39(6): 4526-4533.
16. Sapawe, N. (2015). Effective solar-based iron oxide supported
HY zeolite catalyst for the decolorization of organic and simulated dyes. New Journal of Chemistry, 39(8): 6377-6387.
17. Purkait,
M. K., Maiti, A., Das Gupta, S. and De, S. (2007). Removal of Congo Red using
activated carbon and its regeneration. Journal Hazardous Materials, 145:
287-295.
18. Grzechulska,
J. and Morawski, A.W. (2002). Photocatalytic decomposition of azo-dye acid
black 1 in water over modified titanium dioxide. Applied Catalysis B:
Environmental, 36: 45-51.
19. Bokare,
A. D., Chikate, R. C., Rode, C. V. and Paknikar, K. M. (2008). Iron-nickel bimetallic nanopartilcles
for reductive degradation of azo dye Orange G in aqueous solution, Applied
Catalysis B: Environmental, 79: 270-278.
20. Wang,
C.C., Lee, C.K., Lyu, M.D., & Juang, L.C (2008). Photocatalytic degradation
of C.I. basic violet 10 using TiO2 catalysts supported by Y zeolite:
an investigation of the effects of operational parameters. Dyes Pigments, 76,
817-824.
21. Sapawe,
N., Jalil, A. A. and Triwahyono, S. (2013). One-pot electro-synthesis of ZrO2–ZnO/HY
nanocomposite for photocatalytic decolorization of various dye-contaminants. Chemical
Engineering Journal, 225: 254-265.
22. Sun,
J., Wang, X., Sun, J., Sun, R. and Qiao, L. (2006). Photocatalytic degradation
and kinetic of Orange G using nano-sizes Sn(IV)/TiO2/AC
photocatalyst. Journal Molecules Catalysis A: Chemical, 260: 241-246.