Malaysian Journal of Analytical Sciences Vol 24 No 2 (2020): 258 - 265

 

 

 

 

THE DEVELOPMENT OF Acetobacter xylinum GROWTH MEASUREMENT THROUGH TOTAL PROTEIN ANALYSIS

 

(Pembangunan Kaedah Pengukuran Pertumbuhan Acetobacter xylinum Melalui Analisis Jumlah Protein)

 

Sharifah Soplah Syed Abdullah*, Jessica Harriette Supang Anak John, Mohd Azizan Mohd Noor

 

Universiti Kuala Lumpur Branch Campus

Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Vendor City Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia

 

*Corresponding author:  sharifahsoplah@unikl.edu.my

 

 

Received: 20 November 2019; Accepted: 27 March 2020

 

 

Abstract

Acetobacter xylinum, an aerobic Gram-negative bacterium secretes ribbon-like cellulose polymer through the cell wall during growth. The information available on the growth determination of this organism was largely based on turbidimetric measurements which are inaccurate due to the presence of cellulose fragments in the growth medium. Therefore, this study was aimed at developing a rapid and more accurate method for the determination of A. xylinum growth through total protein analysis. The fermentation process was carried out at room temperature in static cultures using Hestrin-Schramm medium at pH 6.4 for 19 days. The methods used for the bacterial growth determination included the total protein content, cell dry weight, viable plate count, and turbidimetry. The total cellular protein content was determined based on the Lowry method after the cells were hydrolyzed in 3% (w/v) of potassium hydroxide (KOH) and boiled for 20 minutes. It was found that the growth profile obtained through the total protein analysis has similar pattern with other conventional methods. However, this method was found to be more accurate and less time-consuming compared to viable plate count and cell dry weight. The growth curve obtained showed four microbial growth phases, namely lag phase (day 0 – day 3), log phase (day 4 – day 12), stationary phase (day 13 – day 16), and finally death phase. The average total cellular protein content of A. xylinum was 27.1 ± 6.8% by weight percent.

 

Keywords:  Acetobacter xylinum, growth profile, total protein assay, bacterial cellulose 

 

Abstrak

Acetobacter xylinum merupakan bakteria aerobik Gram negatif yang mengeluarkan polimer pita selulosa melalui dinding sel ketika pertumbuhan. Sebahagian besar maklumat tentang kaedah penentuan pertumbuhan organisma ini adalah melalui kaedah turbidimetrik yang kurang tepat akibat kewujudan serpihan selulosa di dalam medium pertumbuhan. Oleh itu, kajian ini bertujuan untuk membangunkan kaedah yang cepat dan lebih tepat dalam menentukan pertumbuhan A. xylinum melalui analisis jumlah protein. Proses penapaian dijalankan pada suhu bilik dalam keadaan statik menggunakan medium Hestrin-Schramm pada pH 6.4 selama 19 hari. Kaedah yang digunakan untuk penentuan pertumbuhan bakteria termasuk jumlah kandungan protein, berat kering sel, bilangan sel hidup dan turbidimetri. Jumlah kandungan protein sel ditentukan melalui kaedah Lowry setelah sel-sel dihidrolisis dengan mendidihkannya di dalam 3% (w/v) KOH selama 20 minit. Profil pertumbuhan yang diperoleh melalui analisis jumlah protein mempunyai profil yang sama dengan kaedah konvensional yang lain. Walau bagaimanapun, kaedah ini didapati lebih tepat dan singkat berbanding kaedah bilangan sel hidup dan berat kering sel. Lekuk pertumbuhan yang diperolehi menunjukkan empat fasa pertumbuhan mikrob, iaitu fasa lag (hari 0 – hari ke 3), fasa log (hari ke 4 - hari ke 12), fasa pegun (hari ke 13 - hari ke 16) dan akhirnya fasa kematian. Kandungan protein selular keseluruhan A. xylinum adalah 27.1 ± 6.8% mengikut peratus berat sel.

 

Kata kunci:  Acetobacter xylinum, profil pertumbuhan, penentuan jumlah protien, selulosa bakteria

 

References

1.       Castro, C., Zuluaga, R., Putaux, J. L., Caro, G., Mondragon, I. and Gañán, P. (2011). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers, 84(1): 96-102.

2.       Brown, A. J. (1886). On an acetic ferment which forms cellulose. Journal of Chemical Society Transaction, (49); 432-439.

3.       Moniri, M., Boroumand Moghaddam, A., Azizi, S., Abdul Rahim, R.,  Ariff, A., Zuhainis Saad, W., Navaderi, M. and Mohamad, R. (2017). Production and status of bacterial cellulose in biomedical engineering Nanomaterials, 7(9): 257.

4.       Chawla, P. R., Bajaj, I. B., Survase, S. A. and Singhal, R. S. (2009). Microbial cellulose: Fermentative production and applications. Food Technolgy and Biotechnology, 47(2): 107-124.

5.       Maia M. R. G., Marques, S., Cabrita, A. R., John Wallace, R., Thompson, G. and Fonseca, A. J. (2016). Simple and versatile turbidimetric monitoring of bacterial growth in liquid cultures using a customized 3D printed culture tube holder and a miniaturized spectrophotometer: application to facultative and strictly anaerobic bacteria. Frontier Microbiology, 7: 1381.

6.       Lestari, P., Elfrida, N., Suryani, A. and Suryadi, Y. (2015). Study on the production of bacterial cellulose from Acetobacter xylinum using agro - waste. Jordan Journal Biological Sciences, 7(1): 75-80.

7.       Zahan, K. A., Nordin, K., Mustapha, M. and Mohd Zairi, M. N. (2015). Effect of incubation temperature on growth of Acetobacter xylinum 0416 and bacterial cellulose production. Applied Mechanics and Materials, 815: 3-8.

8.       Kampen, W. H. (1997). Nutritional requirements in fermentation processes. Fermentation and Biochemical Engineering Handbook. New Jersey: Noyes Publication, pp. 152.

9.       Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265-275.

10.    Gregersen, T. (1978). Rapid method for distinction of gram-negative from gram-positive bacteria. European Journal Applied Microbiology Biotechnology, 5: 123-127.

11.    Islam, M. S., Aryasomayajula, A. and Selvaganapathy, P. R. (2017). A review on macroscale and microscale cell lysis methods. Micromachines, 8(83): 1- 27.

12.    Kongruang, S. (2008). Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Applied Biochemistry and Biotechnology, 148(1-3): 245-256.

13.    Aquary, I. D., Kawuri, R., Ramona, Y. and Cass, G. (2014). Optimization of the production of microbial cellulose by Acetobacter xylinum in Aloe barbadensis Mill. medium. International Journal of Pure and Applied Bioscience, 2(6): 215-222.

14.    Esa. F., Rahman, N. A., Kalil, M. S. and Tasirin, S. M. (2017). Effects of agitation conditions on bacterial cellulose production by Acetobacter xylinum 0416 in fermentation of matured coconut water medium. Malaysian Journal of Analytical Sciences, 21(1): 261-266.