Malaysian
Journal of Analytical Sciences Vol 24 No 2 (2020): 258 - 265
THE
DEVELOPMENT OF Acetobacter xylinum
GROWTH MEASUREMENT THROUGH TOTAL PROTEIN ANALYSIS
(Pembangunan Kaedah Pengukuran Pertumbuhan Acetobacter xylinum Melalui Analisis
Jumlah Protein)
Sharifah Soplah Syed Abdullah*, Jessica Harriette Supang
Anak John, Mohd Azizan Mohd Noor
Universiti Kuala Lumpur Branch
Campus
Malaysian Institute of Chemical and
Bioengineering Technology, Lot 1988 Vendor City Taboh Naning, 78000
Alor Gajah, Melaka, Malaysia
*Corresponding author: sharifahsoplah@unikl.edu.my
Received: 20 November 2019;
Accepted: 27 March 2020
Abstract
Acetobacter
xylinum, an
aerobic Gram-negative bacterium secretes ribbon-like cellulose polymer through
the cell wall during growth. The information available on the growth
determination of this organism was largely based on turbidimetric measurements
which are inaccurate due to the presence of cellulose fragments in the growth
medium. Therefore, this study was aimed at developing a rapid and more accurate
method for the determination of A.
xylinum growth through total protein analysis. The fermentation process was
carried out at room temperature in static cultures using Hestrin-Schramm medium
at pH 6.4 for 19 days. The methods used for the bacterial growth determination
included the total protein content, cell dry weight, viable plate count, and
turbidimetry. The total cellular protein content was determined based on the
Lowry method after the cells were hydrolyzed in 3% (w/v) of potassium hydroxide
(KOH) and boiled for 20 minutes. It was found that the growth profile obtained
through the total protein analysis has similar pattern with other conventional
methods. However, this method was found to be more accurate and less
time-consuming compared to viable plate count and cell dry weight. The growth
curve obtained showed four microbial growth phases, namely lag phase (day 0 –
day 3), log phase (day 4 – day 12), stationary phase (day 13 – day 16), and
finally death phase. The average total cellular protein content of A. xylinum was 27.1 ± 6.8% by weight
percent.
Keywords: Acetobacter xylinum,
growth profile, total protein assay, bacterial cellulose
Abstrak
Acetobacter xylinum merupakan bakteria aerobik Gram negatif
yang mengeluarkan polimer pita selulosa melalui dinding sel ketika pertumbuhan.
Sebahagian besar maklumat tentang kaedah penentuan pertumbuhan organisma ini
adalah melalui kaedah turbidimetrik yang kurang tepat akibat kewujudan serpihan
selulosa di dalam medium pertumbuhan. Oleh itu, kajian ini bertujuan untuk
membangunkan kaedah yang cepat dan lebih tepat dalam menentukan pertumbuhan A. xylinum melalui analisis jumlah
protein. Proses penapaian dijalankan pada suhu bilik dalam keadaan statik
menggunakan medium Hestrin-Schramm pada pH 6.4 selama 19 hari. Kaedah yang
digunakan untuk penentuan pertumbuhan bakteria termasuk jumlah kandungan
protein, berat kering sel, bilangan sel hidup dan turbidimetri. Jumlah
kandungan protein sel ditentukan melalui kaedah Lowry setelah sel-sel
dihidrolisis dengan mendidihkannya di dalam 3% (w/v) KOH selama 20 minit.
Profil pertumbuhan yang diperoleh melalui analisis jumlah protein mempunyai
profil yang sama dengan kaedah konvensional yang lain. Walau bagaimanapun,
kaedah ini didapati lebih tepat dan singkat berbanding kaedah bilangan sel
hidup dan berat kering sel. Lekuk pertumbuhan yang diperolehi menunjukkan empat
fasa pertumbuhan mikrob, iaitu fasa lag (hari 0 – hari ke 3), fasa log (hari ke
4 - hari ke 12), fasa pegun (hari ke 13 - hari ke 16) dan akhirnya fasa
kematian. Kandungan protein selular keseluruhan A. xylinum adalah 27.1 ± 6.8% mengikut peratus berat sel.
Kata kunci: Acetobacter
xylinum, profil pertumbuhan, penentuan jumlah
protien, selulosa bakteria
References
1.
Castro, C., Zuluaga, R., Putaux, J. L., Caro, G.,
Mondragon, I. and Gañán, P. (2011). Structural characterization of bacterial
cellulose produced by Gluconacetobacter swingsii sp. from Colombian
agroindustrial wastes. Carbohydrate Polymers, 84(1): 96-102.
2.
Brown, A. J. (1886). On
an acetic ferment which forms cellulose. Journal of Chemical Society Transaction,
(49); 432-439.
3.
Moniri, M., Boroumand
Moghaddam, A., Azizi, S., Abdul Rahim, R.,
Ariff, A., Zuhainis Saad, W., Navaderi, M. and Mohamad, R. (2017). Production
and status of bacterial cellulose in biomedical engineering Nanomaterials,
7(9): 257.
4.
Chawla, P. R., Bajaj,
I. B., Survase, S. A. and Singhal, R. S. (2009). Microbial cellulose:
Fermentative production and applications. Food Technolgy and Biotechnology,
47(2): 107-124.
5.
Maia M. R. G., Marques,
S., Cabrita, A. R., John Wallace, R., Thompson, G. and Fonseca, A. J. (2016).
Simple and versatile turbidimetric monitoring of bacterial growth in liquid
cultures using a customized 3D printed culture tube holder and a miniaturized
spectrophotometer: application to facultative and strictly anaerobic bacteria. Frontier
Microbiology, 7: 1381.
6.
Lestari, P., Elfrida, N.,
Suryani, A. and Suryadi, Y. (2015). Study on the production of bacterial
cellulose from Acetobacter xylinum using
agro - waste. Jordan Journal Biological Sciences, 7(1): 75-80.
7.
Zahan, K. A., Nordin, K.,
Mustapha, M. and Mohd Zairi, M. N. (2015). Effect of incubation temperature on
growth of Acetobacter xylinum 0416 and
bacterial cellulose production. Applied Mechanics and Materials, 815: 3-8.
8.
Kampen, W. H. (1997).
Nutritional requirements in fermentation processes. Fermentation and
Biochemical Engineering Handbook. New Jersey: Noyes Publication, pp. 152.
9.
Lowry, O. H.,
Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement
with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265-275.
10.
Gregersen, T. (1978).
Rapid method for distinction of gram-negative from gram-positive bacteria. European
Journal Applied Microbiology Biotechnology, 5: 123-127.
11.
Islam, M. S.,
Aryasomayajula, A. and Selvaganapathy, P. R. (2017). A review on macroscale and
microscale cell lysis methods. Micromachines, 8(83): 1- 27.
12.
Kongruang, S. (2008).
Bacterial cellulose production by Acetobacter
xylinum strains from agricultural waste products. Applied Biochemistry and
Biotechnology, 148(1-3): 245-256.
13.
Aquary, I. D., Kawuri,
R., Ramona, Y. and Cass, G. (2014). Optimization of the production of microbial
cellulose by Acetobacter xylinum in Aloe barbadensis Mill. medium. International Journal of Pure and
Applied Bioscience, 2(6): 215-222.
14.
Esa. F., Rahman, N. A.,
Kalil, M. S. and Tasirin, S. M. (2017). Effects of agitation conditions on
bacterial cellulose production by Acetobacter
xylinum 0416 in fermentation of matured coconut water medium. Malaysian
Journal of Analytical Sciences, 21(1):
261-266.